Efficient Collision Detection for MD-Simulations
The most time consuming part in molecular dynamics simulations is the collision detection. Usually, this problem is solved by restricting theshape of the particles to spheres. I will present an algorithm, originally developed for virtual reality visualizations by D.Baraff and M.C.Lin, that enables us to use complex polyhedra (up to 920 faces and more). The expected run time is O(N), where N is the number of particles in the simulation. Neither complexity nor shape of the particles affect the run time.
Dynamics of a sliding particle in rotating drum
Using the averaging method we
- test different friction laws
- search for periodic orbits
- investigate the structure of the phase space
At the present we are interested in better understanding the influence of friction in simulations for granular systems. The far goal is a 3-dimensional simulation for non-spherical particles.
Dynamics of a Sliding Particle in a Rotating DrumPrimary tabs
The motion of a sliding particle, influenced by friction, in a rotating drum is investigated. A differential equation is formulated for general friction laws. Assuming a constant coefficient of friction, the equation is exactly solvable. For a velocity dependent coefficient of friction, perturbation methods may be used. The nonperturbed system is solved and with the help of the averaging method, the perturbed system can be examined for periodic motions.
A Novel Approach to the Simulation of Particles on a Large Size-Range
A Novel Approach to the Simulation of Particles on a Large Size-Range.
Stress in Static Sandpiles
We are interested in the stress distribution in static granular matter. Experiments have found a minimum of the vertical normal stress beneath the apex of a sandpile.
Because of the indeterminacy of static friction force even in the simplest sandpile and the ensuing absence of a constitutive relation between stress and strain (Hooke's law) there is no closed set of equations. Continuum theories, trying to describe the "dip", have to make assumptions on the existence of constitutive relations among the components of the stress tensor itself.
Statik und Dynamik von Aufschüttungen
Granular media conceal a very complex behaviour behind their apparent simplicity ("... is just sand"). Typical properties of granulates are, for example, the discrete structure and the inhomogeneity. This leads to the fact that backfills far away from thermal equilibrium can be very "stable" after all. The question now arises as to what consequences this has for the behaviour of sand accumulations.
Spannungsverteilung in Sandhaufen
We are interested in the stress distribution in static granular matter. Experiments have found a minimum of the vertical normal stress beneath the apex of a sandpile. Because of the indeterminacy of static friction force even in the simplest sandpile and the ensuing absence of a constitutive relation between stress and strain (Hooke's law) there is no closed set of equations.
Schwingungen bei trockener Reibung
A short talk on oscillations with dry friction.
Rotation and Reptation
In order to understand the peculiar behavior of granular matter, it is oftenelucidating to observe the physics of only a few grains. We present twosetups which fall into this class: The motion of a single particle in arotating drum, and the collective behavior of a few particles under theinfluence of a swirling m
Nichtlineare Schwingungen bei trockener Reibung
The oscillation behaviour of a sliding particle under dry friction in a vertical rotating drum is investigated theoretically. A differential equation is set up for general friction laws. For constant friction coefficients, the equation can be solved exactly. For velocity-dependent friction, it can be treated perturbation theoretically. The unperturbed system is solved and with the help of the averaging method, the perturbed system can then be examined for periodic movements.