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Abstract We numerically investigate the effective material
properties of aggregates consisting of soft convex polygo-
nal particles, using the discrete element method. First, we
construct two types of “sand piles” by two different proce-
dures. Then we measure the averaged stress and strain, the
latter via imposing a 10% reduction of gravity, as well as the
fabric tensor. Furthermore, we compare the vertical normal
strain tensor between sand piles qualitatively and show how
the construction history of the piles affects their strain dis-
tribution as well as the stress distribution. In the next step,
elastic constants are determined, assuming Hooke’s law to
be locally valid throughout the sand piles. We determine the
relationship between invariants of the stress and strain ten-
sor, observing that the behaviour is nonlinear. While linear
elastic behaviour near the centre of the pile is compatible
with our data, nonlinearity signals the transition to plastic
behaviour near its surface. A similar behaviour was assumed
by Cantelaube et al. (Static multiplicity of stress states in
granular heaps. Proc R Soc Lond A 456:2569–2588, 2000).
We find that the macroscopic stress and fabric tensors are
not collinear in the sand pile and that the elastic behaviour is
anisotropic in an essential way.
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1 Introduction

In the last few years, extensive research has been devoted
to the study of granular materials due to their importance
for applications in various industries. Moreover, they pose
fundamental analytical challenges [1,2]. An important issue
is to understand how the mechanical properties of granular
matter arise, both in dynamic configurations and in the static
limit. In this regard, one of the simplest examples out of a
collection of possible granular arrangements is the static sand
pile, and the practical issue of storing granular materials in
the form of sand piles occurs in many industrial situations.
In order to handle the processing of granular material in a
sand pile properly, it is useful to understand its mechanical
properties and effective material behaviour.

The stress distribution under a heap of sand displays some
interesting properties [3–6] which may be traced back to the
static indeterminacy of friction-stabilized aggregates. This
has led to a multitude of studies concerning the pressure or
stress distribution beneath sand piles under a large variety
of conditions [7–21]. Depending on characteristics such as
the size and shape distribution of particles but also the con-
struction history of the aggregate, piles consisting of the same
material may have different stress distributions [6]. If the pile
is created by dropping material from a point source (wedge
sequence [22]), there usually is a stress minimum below the
centre of the pile, while if it is dropped layer-wise (layered
sequence [23]), there is no minimum in the vicinity of the
centre. For a detailed description of the practical realization
of wedge and layered sequences, see Ref. [23]. In some cases,
the stress distribution displays a pronounced minimum below
the tip of the sand pile and in others the minimum is only a
weak indentation [9]. If the sand pile contains a mixture of
ellipsoidal particles, a large stress dip appears below the tip of
the pile for a certain construction history of the pile, whereas
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when it contains a mixture of roundish particles, there is a
much smaller dip [9,10].

To a certain extent, even more interesting than studying
the stress tensor is to determine the strain distribution within
a sand pile. One might regard it as one of the essential ques-
tions in the discussion of granular heaps, whether and how
deformation fields in the presence of stress can be defined;
such a question aims at the identification of a strain tensor and
at establishing a correlation between the stress and strain ten-
sors, in order to determine effective material properties. Up to
now, strains have not been measured in experiments on sand
piles, nor is there any discussion, how such a feat might be
accomplished. Theoretical models and analysis assume that
for sand piles displacement fields are not available. There-
fore, constitutive relations proposed for sand piles [1,2] have
been obtained without the introduction of a strain tensor. Of
course, one may wonder whether the notion of a constitutive
relation makes sense at all, if the behaviour of the system is
history dependent, i.e., if the system does not have a state in
the sense of the original meaning of the word, referring to
a situation characterized by a few state variables, no matter
how these were prepared. To some extent, speaking of a state
and of constitutive relations describing the way state vari-
ables are connected with each other, excludes history depen-
dence! On the other hand, there is a well-known example
where this kind of language is used nevertheless, and where
it works well: this is the case of a ferromagnet. A given exter-
nal field does not uniquely determine the magnetization of a
ferromagnetic system, which in addition depends on how the
preceding state was arrived at, whether the field was reduced
to its current value from above or increased from below, and
so on. Nevertheless, one can define constitutive relations for
ferromagnetic states either by specifying them for incremen-
tal state changes or by giving full magnetization curves for a
preparation history starting from a well-defined initial state.

If we hypothesize that the situation for a sand pile is sim-
ilar, knowing that there is a history dependence but also that
states with a controlled history are reproducible, it is mean-
ingful to ask both the question of sensitivity to preparation
procedures and whether the usual conjugate variable to stress,
which is strain, can be a significant element in the description
of a sand pile in terms of a constitutive relation, presumably
with restrictions applying, concerning the range of such a
relation or its integrability.

In this paper, we focus, on the one hand, on the sensitiv-
ity of the strain distribution to the preparation of sand piles;
on the other hand, we wish to investigate numerically the
effective material properties of sand piles. By performing
simulations in the framework of a discrete element method
(DEM), we obtain a macroscopic strain tensor from micro-
scopic quantities, viz. the displacements of the individual
grains in a two-dimensional sand pile. Then we can estimate
local elastic coefficients assuming Hooke’s law. Generally

speaking, if we find almost constant values for the macro-
scopic elastic coefficients throughout the sand pile, linear
elasticity may be considered a good approximation. If we
obtain, however, strongly varying elastic coefficients, then
we can say that linear elasticity does not work for the pile as
a whole. In addition, this computation will serve as a con-
sistency check for theoretical assumptions such as the rigid-
particle hypothesis. If our calculation produced macroscopic
elastic constants of the same order of magnitude as the micro-
scopic Young’s modulus Y that we assign to the particles for
the calculation of forces (explained below), then the idea that
the sand pile has a macroscopic elastic behaviour different
from that of its microscopic constituents would be invali-
dated, and the elastic moduli of the pile would go to infinity
with those of the grains. This idea can work only, if the sand
pile admits a finite elastic response in spite of the rigidity
of the grains, which means that elastic coefficients such as
the macroscopic Young’s modulus E of the sand pile must
be significantly smaller in the simulation than those of the
particles. In non-cohesive media elastic coefficients such as
E can describe responses to compressive stresses only, as
tensile stresses are not supported by the material. Hence the
notion of elasticity has a more restricted meaning than usual.

The paper is organized as follows. In Sect. 2, we first
describe our simulation method for two-dimensional “sand
piles” consisting of soft convex polygonal particles. In
Sect. 3, we determine the stress tensor as well as the strain
tensor, adopting Cambou’s best-fit strain approach for the lat-
ter. We discuss the averaging procedure used to extrapolate
to macroscopic fields. Then we present simulation results for
averaged vertical normal strains at different heights inside a
sand pile poured from either a point source or a line source.
We introduce the fabric tensor of polygonal particles and dis-
cuss the properties of its macroscopic average in Sect. 4. Once
the (incremental) stress and strain tensors are determined, we
calculate macroscopic elastic coefficients assuming Hooke’s
law of (anisotropic) linear elasticity in Sect. 5. Section 6 dis-
cusses stress and strain invariants. Conclusions are drawn in
Sect. 7.

2 Simulation method

We perform numerical simulations, in which a sand pile is
constructed from several thousand convex polygonal parti-
cles with varying shapes, sizes and edge numbers. The par-
ticles are poured from either a point source, i.e. according
to the wedge-sequence protocol, which regularly leads to
a pressure minimum under the pile, or from a line source,
with the length of the line being continuously adapted to
the momentary width of the top of the pile, which corre-
sponds to the layered-sequence protocol [23]. We use a dis-
crete-element method with soft but shape invariant particles:
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two particles in contact with each other are allowed to inter-
penetrate partially. It would be inefficient to solve the elas-
tic equations for each collision between pairs of nonrigid
particles, so we do not allow shape changes. An alterna-
tive approach allowing the (desirable) solution of the equa-
tions of motion for rigid particles would be contact dynamics
[24–26], which is algorithmically very demanding and does
not scale linearly with the particle number. Event-driven
codes [27,28] could in principle also realize rigid particles,
but this would be too cumbersome with polygonal particles.
Moreover, event-driven simulations become inefficient in the
limit of large densities (due to the phenomenon of inelastic
collapse). Therefore, small overlaps of particles are accepted,
but a repulsive force is introduced that is proportional to the
overlap area.

We solve the equations of motion following from the bal-
ances of momentum and angular momentum for each parti-
cle, using a fifth-order Gear predictor-corrector method [29].
Forces between colliding particles are calculated from the
geometric characteristics of the overlap area and contact
length (defined in the appendix) and the relative velocities of
the two particles. A brief description is given in the appen-
dix. The calculation involves phenomenological elastic con-
stants such as the particle Young’s modulus Y as well as
model parameters for friction and viscous damping. Details
on the verification of the model assumptions concerning the
realization of static friction and the avoidance of unphysi-
cal oscillations are given in [30], a description of algorith-
mic tricks to speed up collision detection is presented in
[31].

In two dimensions, there are three quantities per particle,
characterizing its position (two coordinates) and its orienta-
tion (one angle); for these, the momentum balance provides
two equations, the angular momentum balance another one:

mi r̈i =
n(i)∑

j=1

Fi j + Gi , Ii ϕ̈ =
n(i)∑

j=1

Li j . (1)

Here, the subscript i runs over all the particles and the sub-
script j over all the contacts of particle i with other particles.
That is, forces and torques are exchanged between particles
only if they touch each other. Hence we have contact forces
and these are short range. Gi is the force acting on particle i
due to external fields, in our case just gravity, Fi j the force
created by the particle touching particle i in contact j . There
is at most one contact between two particles as our polygons
are restricted to being convex.

The force calculation is one of the most time-consum-
ing parts of the algorithm. Of course, advantage is taken of
the short-range nature of the forces by calculating only non-
vanishing forces, i.e., forces between particles that are really
in contact with each other. To achieve fast contact determina-
tion in a time that is proportional to the number of particles

(not to its square), independent of the complexity, i.e., the
number of edges of the particles, algorithms from virtual
reality and computational geometry were adapted. These use
bounding boxes and Voronoi regions to determine overlaps
of particles [30,31].

3 Stress and strain calculations

From the forces, we can compute stresses by appropriate
averaging procedures. It is easy to derive a formula for the
average stress obtained in a homogeneous polygonal particle
[32], assuming that the forces given in the contact points act
on the corresponding edge of the polygon:

σ
p
i j = 1

V p

m∑

c=1

xc
i f c

j , (2)

where xc
i is the i th component of the branch vector pointing

from the centre of mass of the particle to the contact point c,
and f c

j is the j th component of the total force in that contact
point. V p is the volume of particle p (actually its area, since
we are working in 2D).

Expression (2) may be interpreted as the stress tensor asso-
ciated with a single particle. This microscopic stress would
not be a convenient means to describe the macroscopic sand
pile, as it fluctuates wildly within a volume containing a few
sand grains. Moreover, it is not defined in the voids between
the grains. Hence, for a continuum description, we need to
average microscopic stresses. Weighting each particle with
its volume fraction the prefactor 1

V p in Eq. 2 gets replaced
by 1

V and a sum over all particles (i.e. over p) is performed
(see for example [33]).

A representative volume element (RVE) is introduced via
the requirement that the average becomes size independent,
if the volume is taken equal to this value or larger. Averaging
over different volumes gives different results, as long as the
volume element is too small. As we increase the size of the
volume element in the computation of the average, the latter
converges to a certain value as shown in Fig. 1. We find that
sizes of the volume element containing 100–200 particles are
sufficient to serve as RVE.

While the calculation of stresses is rather straightforward,
this is not true for strains. In fact, even the definition of strain
is problematic after assuming particles to be essentially rigid.
For this reason, most macroscopic descriptions proposed in
the last few years try to get by without using strain at all.
Whether this approach can be successful in the long run
remains to be seen. In any case, even if it may be difficult or
impossible to determine strains in experiments on sand piles,
this is not quite so in a simulation.

Our original idea was to define strains with respect to a
hypothetical reference state of zero gravity of a sand pile
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Fig. 1 Convergence behaviour of a the stress tensor components,
b the strain tensor components, as the number of particles in the volume
element used for averaging is increased. Obviously, the RVE should be

chosen to contain at least 100 particles. The stress tensor is given in
units N/m, the strain tensor is nondimensional

essentially identical to the one at ambient gravity, except of
course for slightly displaced particle centres. In this refer-
ence state, no particle rearrangements should be present in
comparison with the actual state. The reference state would
then be obtained from the ambient one by slowly reducing
gravity. In principle, it is not necessary to go down to zero
gravity, as long as the strains increase linearly with the gravity
level—one may then extrapolate to zero from the knowledge
of the positions of the particle centres of mass at two arbitrary
different gravity levels. Of course, it is necessary to let the
sand pile approach a state of rest after a reduction of gravity.
Moreover, linearity has to be checked by looking at different
changes of gravity level.

This method does not work as expected, as we found out
by doing the measurements in simulations, since a reduction
of gravity leads to a proportional reduction only of normal
stresses corresponding to the direction of gravity, i.e. of σyy ,
but not of σxx . Stresses in the x direction are essentially due
to static friction of the pile with its support. Since most con-
tacts are not fully mobilized, contact forces at the bottom of
the pile are not strictly proportional to the normal force (their
weight); the effective friction coefficient can vary between
0 and μ during a change of the gravity level. Hence, the
method does not yield absolute displacements, as we have
no access to the hypothetical reference state. Nevertheless,
it is of course still possible to determine incremental strains,
which are defined as the strain changes between the actual
state and a state at a different gravity level. Using incremen-
tal stresses as well, we are then in a position to determine
macroscopic elastic coefficients.

We are aware of two approaches given in the literature
for determining averaged strains in an assembly of grains,
the equivalent continua theories [34,35] and the least-square
fit theories [36]. In our study, we use one of the simplest

techniques, namely the best-fit strains of Cambou et al. [36]
who consider the relative translation instead of the contact
deformations, which means to exclude particle rotations from
the analysis. Displacements are characterized in terms of the
translations of the particle centres.

Let du p
i denote the translation of the centre of particle

p along axis i [i = x (
∧= 1) or i = y(

∧= 2)]. The relative
translation of the pairs of grains p and q forming contact
c is

d�uc
i = duq

i − du p
i (3)

If every particle of an assembly of grains moved according to
a uniform displacement gradient tensor ε j i , then the relative
translation at contact c would be

d�uc
i = ε j i l

c
j (4)

where lc
j is the j compoent of the vector joining the centres

of mass of the two particles sharing contact c and we have
used the Einstein summation convention for repeated sub-
scripts. Whenever a pair of subscripts arises in a product or
at a single tensor, summation over this subscript is implied
(unless it is explicitly excluded in the accompanying text).

However, usually microscopic displacements do not nor-
mally have uniform gradients, so for a general case, we would
have

d�uc
i �= ε j i l

c
j (5)

Then, we determine the tensor ε j i for which the square sum
of the deviations in (5) is smallest i.e, we minimize the fol-
lowing quantity

Z =
∑

c

(d�uc
i − ε j i l

c
j )

2. (6)

with respect to εkl , i.e., we set ∂ Z
∂εkl

= 0 for every pair k, l.
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Fig. 2 Vertical normal strain distribution at different heights of simu-
lated sand piles. a sand piles constructed using wedge sequences (aver-
age over 9 piles), b sand piles poured in layered sequences (average
over 10 piles). Height levels: 4.5, 9, 13.5, 18, 22.5, 27 cm. The curve

with the largest lateral extension corresponds to the lowest height level,
the one with the smallest extension to the top level. The length unit of
the abscissa is 1 m

Equation 6 gives four equations in 2D which can be writ-
ten in matrix form as follows
⎛

⎜⎜⎝

n∑
c=1

lc
1lc

1

n∑
c=1

lc
1lc

2

n∑
c=1

lc
2lc

1

n∑
c=1

lc
2lc

2

⎞

⎟⎟⎠

(
ε1i

ε2i

)

=

⎛

⎜⎜⎝

n∑
c=1

d�uc
i lc

1

n∑
c=1

d�uc
i lc

2

⎞

⎟⎟⎠ (i is 1 or 2) (7)

The coefficient matrix on the left-hand side of (7) is pos-
itive definite, if there exist at least two branch vectors in the
system that are not parallel to each other. This is the neces-
sary and sufficient condition of the existence of the Cambou
et al. best-fit strain in 2D.

Let zi j denote the inverse of the coefficient matrix. In order
to determine the ε11 and ε21 we substitute i = 1, whereas
i = 2 is substituted for the calculation of ε12 and ε22. The
solution of (7) can be written in the general form

εi j = zik

∑

c

d�uc
j l

c
k i, j = 1, 2 (8)

The tensor εi j in (8) is the best-fit translation gradient of
Cambou et al. [36]. The components of the strain tensor in
two dimensions are as follows

εxx (x, y) =
∑

c

d�uc
x

(
z11lc

x + z12lc
x

)
, (9a)

εyy(x, y) =
∑

c

d�uc
y

(
z21lc

y + z22lc
y

)
, (9b)

εxy(x, y) =
∑

c

d�uc
y

(
z11lc

x + z12lc
y

)
, (9c)

εyx (x, y) =
∑

c

d�uc
x

(
z21lc

x + z22lc
y

)
. (9d)

The box size used for the computation of the strain ten-
sor is the same as for the stress tensor. It may be added
that we also have determined strains by direct numerical
differentiation and compared these displacement gradients
with various strain definitions from the literature, including
the Cambou strain. It turns out that the Cambou strain is
closest to the displacement gradient and numerically well-
behaved even near the sandpile surface, where fluctuations
render numerical differentiation awkward.

Being essentially a displacement gradient, the Cambou
strain is not necessarily symmetric. We will denote symme-
trized strains by ui j , i.e. uxy = 1

2 (εxy + εyx ), whereas there
is no difference between ui j and εi j when i = j .

3.1 Simulation results

In all the simulations discussed in this article, the particles
were polygons inscribed into an ellipse with a corner number
randomly chosen between 6 and 8. The particle size varied
by 30% about an average value of 3.4 mm for both the semi-
major and semiminor of the ellipse, which were drawn from
a uniform random distribution.

The vertical normal strain tensor component obtained
from DEM simulations is displayed in Fig. 2 for sand piles
that were constructed using the two different pouring pro-
tocols wedge sequence and layered sequence. The averaged
strain tensor was evaluated throughout the sand pile; we rep-
resent it via a plot of tensor components as a function of the
lateral coordinate x of the pile for layers of given heights
y1, y2, . . . , yn .

We give this component of the strain tensor to obtain a qual-
itative picture, although the foregoing discussion shows that it
is not a rigorously determined quantity. While it has the cor-
rect scaling with gravity, vertical and horizontal strains are of
course coupled, so the errors produced by the method in the
horizontal direction will also affect the vertical direction. The
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topmost curve in the graph shows the strain tensor result at the
bottom layer of the corresponding sand pile, whereas the bot-
tom curve corresponds to the top layer.

An interesting feature of the vertical normal strain tensor
for various heights is that the vertical normal strain changes
with the layer position in the sand piles like the stress ten-
sor. The vertical normal strain shows a dip (Fig. 2a) near the
centre of the piles that are poured from a point source, i.e.,
according to the wedge-sequence protocol. It can be seen
that the strain dip appears not only at the bottom layer but
also exists up to a certain height of the sand pile. For sand
piles poured as layered sequences, the vertical normal strain
increases towards the centre and towards the bottom layer of.
A strain dip does not occur in the profiles of these sand piles,
constructed from a line source.

4 Fabric tensor

The density distribution is not homogeneous under a sand
pile that is poured from a point source. Therefore, the inter-
nal texture of the pile is an important quantity. Furthermore,
forces are propagated from one particle to the neighbour par-
ticles in an assembly of grains only via the contact points of
the particle. Thus, for the quasi-static mechanics of granular
aggregates, it is useful to have a description of the associated
contact network of the inter-particle contacts.

A particular quantity used to characterize the internal tex-
ture of the granular assembly is the so-called fabric tensor
[37,38]. Various definitions of the fabric tensor exist in the
literature including definitions for elliptical, spherical or
polygonal particles. In our study, we consider non-spherical
particles so we employ here a mathematical formulation for
the fabric tensor, in which the branch vector itself is used
to define a unit vector in the direction towards the contact,
because the simplest way of characterizing the packing net-
work is via the branch vectors connecting the particle centres
of mass with their contact points.

Once we have the contact points of the individual par-
ticles, we can calculate a fabric tensor for each particle,
which yields an additive contribution to the overall fabric
tensor. The latter then is a volume average over many par-
ticles. After defining the fabric tensor for one particle and
for an aggregate of grains, we will demonstrate how it may
be used to examine the granular structure of a material for
isotropy. The fabric tensor relates the contact number den-
sity in the assembly to directional information. Therefore,
it may be used to examine whether there exists any direc-
tional ordering in the material. Our nomenclature and defini-
tions relating to the fabric tensor closely follow the work of
Luding [33,39,40]. Moreover we are interested in the same
quantities obtainable from the fabric tensor as the authors of
[33,39,40].

4.1 The fabric tensor for one particle

The general formula for the fabric tensor of a single particle
is given [37,38] by

F p
i j =

∑

c

nc
i nc

j , (10)

where nc
i is the i th component of the unit vector from the cen-

tre of mass of the considered particle p to its contact point c
with another particle and the sum is over all contacts:

nc
1 = xc − x p√

(xc − x p)2 + (yc − yp)2
,

nc
2 = yc − yp√

(xc − x p)2 + (yc − yp)2
.

(11)

Herein, (xc, yc) and (x p, yp) are the contact point and the
centre of mass, respectively. The trace of the single-particle
fabric tensor is equal to the number of contacts of particle p:

tr(F p
i j ) =

∑

c,i

nc
i nc

i = C p. (12)

(Here, the Einstein summation convention was not applied.)
We take an average weighted by the volume of the particles
over many particles within a representative volume element
in order to determine the average fabric tensor describing the
contact network in a given volume V [33,40].

4.2 Properties of the fabric tensor

The fabric tensor is symmetric by definition and therefore
normally consists of three independent components in two
dimensions. These may be expressed in a coordinate indepen-
dent way using tensor invariants and geometrical quantities.

As the first of these quantities, we choose the trace of the
fabric tensor, which is a scalar. It is also known as the volu-
metric part of the fabric and given by tr(F) = Fmax + Fmin,
where Fmax and Fmin are the major and minor eigenvalues
of the fabric tensor, respectively. In Fig. 3a, the trace of the
averaged fabric tensor is plotted at different heights inside
the sand pile. It can be seen from the figure that the mean
number of contacts decreases near the surface of the sand
pile and increases with increasing distance from the surface
to the centre of the sand pile. Since we have measured the
density to increase towards the centre of the pile in the case of
a pile poured from a point source, this means that the number
of contacts is higher where the density is larger (although the
pressure is lower in the bottom layers).

As a second independent quantity determining the fabric
tensor we may choose the fabric deviator. It is defined as
FD = Fmax − Fmin and is a measure of the degree of anisot-
ropy in the contact network of the granular assembly. The
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Fig. 3 a Trace of the fabric tensor, b deviatoric fraction, c orientation
of fabric versus lateral position in the sand pile, and d orientation of
fabric, stress and strain plotted only for the first two bottom layers of the

pile. The sand piles were produces by wedge sequences. Length units
are as in Fig. 2, angles are given in degrees

deviatoric fraction of the fabric tensor FD/tr(F) is plotted
in Fig. 3b for different heights inside the sand pile. From the
figure, it is observed that the deviatoric fraction decreases
towards the centre. This means that the fabric is more isotro-
pic near the centre of the sand pile and more anisotropic in
the outer part. The fabric anisotropy is between 0 and 0.15.

The angle of orientation of the major eigenvector of the
fabric tensor may serve as the third independent quantity
defining the fabric tensor. The orientation of the major eigen-
vector with respect to the vertical axis is given in Fig. 3c at
different heights inside the sand pile. It changes from −40
degrees (left) to +40 degrees (right).

The orientation of the macroscopic tensors stress and fab-
ric are plotted in Fig. 3d only for the first two bottom layers
of the pile. We omit the strain tensor, since the xx and xy
components of the former cannot be determined reliably. It
can be seen, however, that the orientations are different for
the fabric and stress tensors, which means that these mac-
roscopic tensors are not collinear. Most likely this limits the
utility of a description of granular piles in terms of isotropic
elasticity. Nevertheless, we shall consider such a description
in the following as well as one in terms of anisotropic elastic-
ity to explore these limitations in some detail. In particular,
since along the central line of the sand pile the fabric tensor

is almost isotropic, the determination of the orientation of its
principal axes is necessarily of lower precision than outside
the central interval x ∈ [−0.1m, 0.1m]. An almost isotropic
situation is therefore not excluded near the centre of the pile
and it is indeed assumed in some theories [1,18].

5 Determination of macroscopic elastic constants

Having determined the stress tensor and strain tensor we can
obtain the effective material properties of sand piles assuming
Hooke’s law. This should be considered a tentative approach.
It does not mean that we believe Hooke’s law to be valid
throughout the sand pile. In fact, we have shown in a preced-
ing paper [41] that the elastoplastic approach by Cantelaube
et al. [1,18] is surprisingly good, describing the pressure dis-
tribution of layered sand piles well without adjusting any
parameters, whereas it gives a decent approximation to sand
piles with a pressure minimum after adjusting a single param-
eter. Hence, at least near the surface of the pile, a purely elas-
tic description must fail. However, the calculation of elastic
coefficients will provide us with two pieces of information.
On the one hand, it is important to know whether the sand pile
has elastic properties beyond those of its constituent particles
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(given by the fixed microscopic Young’s modulus Y assigned
to each particle), that is, would there still be an elastic-like
response of a sand pile, if it consisted of rigorously rigid par-
ticles? A necessary prerequisite for answering this question
in the affirmative is that the macroscopic elastic coefficients
obtained for the pile are substantially below those with which
the particles have been endowed for the purpose of numeri-
cal simulation. On the other hand, we can push the compar-
ison with elastoplastic theory further to find out whether it
describes the stress distribution in the whole pile well, not
just at its bottom.

In linear elasticity, there is an elastic potential

W = 1

2
λi jklui j ukl , (13)

leading to the general stress-strain relationship (Hooke’s law)
[42]

σi j = λi jklukl , (14)

where the λi jkl are the elastic moduli constituting the stiff-
ness tensor. The symmetry of the stress and strain tensors and
the existence of an elastic potential give rise to a reduction
of the number of independent components of the stiffness
tensor. In two dimensions, instead of 24 = 16, only 6 of its
elements are independent. In explicit form, the elastic law
reads

σxx = λxxxx uxx + λxxyyuyy + 2λxxxyuxy,

σyy = λxxyyuxx + λyyyyuyy + 2λxyyyuxy,

σxy = λxxxyuxx + λxyyyuyy + 2λxyxyuxy .

(15)

Thanks to linearity, this law holds for incremental stresses
and strains as well, if it does for total stresses and strains.
We measure incremental stresses and strains at many points
inside the pile. Then we can construct a sum

S(x, y) =
m∑

r=1

(
σ (r)

xx −λxxxx u(r)
xx −λxxyyu(r)

yy −2λxxxyu(r)
xy

)2

+
(
σ (r)

yy −λxxyyu(r)
xx −λyyyyu(r)

yy −2λxyyyu(r)
xy

)2

+ 2
(
σ (r)

xy −λxxxyu(r)
xx −λxyyyu(r)

yy −2λxyxyu(r)
xy

)2

(16)

where the superscript r runs over a number m of data points
measured in the close vicinity of the coordinate pair (x, y).
We usually take them near the centre of the RVE used in
the evaluation of the tensor fields. Then S is minimized with
respect to the elastic moduli λi jkl which produces a least-
squares approximation to these parameters. Ordinarily, we
obtain six equations for the six moduli at each point (x, y).
For the sake of accuracy and in order to obtain easily inter-
pretable elastic coefficients, we modify and simplify the pro-
cedure a little.

We can determine the stress tensor components more accu-
rately than those of the strain tensor, because we either have
to compute numerical derivatives for the latter or to use a fit-
ting procedure [36], whereas the stress tensor is obtained by
straightforward averaging. Hence, it is more useful to start
from the inversion of (14),

ui j = si jklσkl (17)

where si jkl is the compliance tensor and to define an anal-
ogous sum S̃(x, y) containing the expressions from the
inverted version of Hooke’s law in squared parentheses. Just
as the number of strain terms in S is three times larger than
the number of stress terms, the number of stress terms in S̃ is
three times larger than that of strain terms. Moreover, because
interpretation of the results is somewhat cumbersome with
six different elastic coefficients, we restrict ourselves to the
two simplest cases, that of cubic anisotropy and the isotro-
pic case. Abbreviating sxxxx , sxxyy , and sxyxy by s1, s2, and
s3, respectively, we have for the sum of squares that is to be
minimized with respect to the si :

S̃(x, y) =
m∑

r=1

(
u(r)

xx − s1σ
(r)
xx − s2σ

(r)
yy

)2

+
(

u(r)
yy − s2σ

(r)
xx − s1σ

(r)
yy

)2 +2
(

u(r)
xy −s3σ

(r)
xy

)2
.

(18)

Introducing the notation 〈A〉 = 1
m

m∑
r=1

A(r), the solution of

this minimization problem is given by

s1 + s2 =
〈
(uxx + uyy)(σxx + σyy)

〉
〈
(σxx + σyy)2

〉 , (19)

s1 − s2 =
〈
(uxx − uyy)(σxx − σyy)

〉
〈
(σxx − σyy)2

〉 , s3 =
〈
uxyσxy

〉
〈
σ 2

xy

〉 ,

and the elastic moduli are obtained from

λxxxx ≡ λ1 = s1

s2
1 − s2

2

, λxxyy ≡ λ2 = −s2

s2
1 − s2

2

,

λxyxy ≡ λ3 = 1

2s3
.

(20)

The isotropic limit corresponds to λ3 = G = 1
2 (λ1 − λ2). In

this case, the sum S may be replaced by

S′ =
m∑

r=1

[
(σ (r)

xx + σ (r)
yy ) − 2K (u(r)

xx + u(r)
yy )

]2

+
[
(σ (r)

xx − σ (r)
yy ) − 2G(u(r)

xx − u(r)
yy )

]2

+ 4
[
σ (r)

xy − 2Gu(r)
xy

]2
, (21)

a case in which we can directly minimize with respect to the
bulk modulus K and the shear modulus G.
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This leads to

K =
〈
(σxx + σyy)(uxx + uyy)

〉

2
〈
(uxx + uyy)2

〉 ,

G =
〈
(σxx − σyy)(uxx − uyy)

〉 + 4
〈
σxyuxy

〉

2
(〈

(uxx − uyy)2
〉 + 4

〈
u2

xy

〉) .

Note that we assume local isotropy only when evaluating the
bulk and shear modulus this way. Globally, the system can
be anisotropic similar to a liquid under hydrostatic pressure,
where the up-down direction clearly is distinguished. From
(22), we can calculate the macroscopic Young’s modulus via
E = 3G − G2

K .
In order to compare isotropic elasticity with the case of

cubic anisotropy, we calculate the bulk modulus and versions
of Young’s modulus and the shear modulus for that case,
too. The bulk modulus is direction independent and simply
given by K = 1

2 (λ1 + λ2). Young’s modulus is orienta-
tion dependent. Along the x and y axes, it takes the value
E p = (

λ2
1 − λ2

2

)
/λ1, along the bisectors (at angles of

45◦), Eb = λ1 + λ2. The average of the two quantities is
Eav = λ1 + 1

2 (λ1 − λ2)λ2/λ1. For the shear modulus along
the principal directions, we find G p = λ3, for the shear mod-
ulus along the bisectors Gb = 1

2 (λ1 −λ2), hence the average
over these two directions is Gav = 1

2λ3+ 1
4 (λ1−λ2). Figure 4

gives some results from calculations along these lines.
In the figure, we compare straightforward calculations

assuming isotropic linear elasticity with averages over two
nonequivalent orientations (chosen parallel to the x or y axes
and to their bisector) from calculations for linear elasticity
with cubic (or rather, square, since everything is 2D) anisot-
ropy. Let us focus first on the bulk modulus and Young’s
modulus. We note that the two calculations give very sim-
ilar results, meaning that the assumed anisotropy has little
effect on these two elastic constants. This is not due to ori-
entation averaging in the case of Young’s modulus, as this
elastic constant is almost the same for the two nonequivalent
orientations. (The bulk modulus is isotropic, so it was not
orientationally averaged.)

There are some differences between the left-hand side pic-
tures and those on the right-hand side, though, even for these
two moduli. When fitting moduli (according to the formulas
for S or S′), we find that the resulting elastic coefficients go
to zero near the surface of the pile. This is also true for the
anisotropic case as we have verified but do not show here.
When fitting compliances (according to the formula for S̃),
the resulting moduli remain finite near the surface at least
in the lower layers, and the curves are smoother for lower
layers but less smooth for higher ones. Mathematically, it is
easy to understand, why the first method produces vanish-
ing moduli near the surface of the pile. Both stresses and
strains go to zero there, but while we have a pretty accurate

method for measuring stresses, our strain results will have
larger numerical errors (strains requiring the direct or indirect
numerical calculation of derivatives). These errors produce
non-zero denominators in (22), leading to vanishing mod-
uli. Using Eq. 19 to fit compliances, we have stresses in the
numerator and the denominator, so the vanishing of stresses
will not immediately lead to vanishing elastic constants. But
what is physically correct? While the stress and strain com-
ponents all should go to zero near the surface, there is no
reason for the elastic coefficients to do so. All that is needed
for plastic behaviour is that the ratio between shear and nor-
mal stresses exceeds a certain threshold, and indeed in the
elastoplastic theory [1,18], the elastic moduli are assumed
to be constant (and asymptotically large). So it appears that
the results obtained fitting compliances are reliable. The fact
that the smoothness of the curves is better using compliances
near the bottom of the pile and better using moduli near its
top, suggests that the best pragmatic engineer-like approach
will be to average the results of the two methods.

Before considering the interesting differences observed
for the shear modulus in the isotropic and anisotropic mod-
els, let us remark that we use a particle Young’s modulus of
Y = 107 N/m and that the scale of the measured elastic mod-
ulus of the sand pile is approximately E = 106 N/m, i.e. one
order of magnitude smaller. This means, the simulated sand
pile is softer by about one order of magnitude than its indi-
vidual particles indicating a decrease in the stiffness of the
sand piles. From this, we may conclude that sound velocities
in the sand pile, a topic concerning the dynamic behaviour
of granular aggregates that has raised some interest recently
[43,44] should be significantly lower than sound velocities
in the bulk material. Of course, we cannot make statements
about the S mode discussed in [43] on the basis of a simple
elastic constant calculation, this would rather require dynam-
ical simulations or measurements as the ones done in [44].
But we can make assertions about the E mode, describable
by a continuum limit and in the elastic region of the pile gov-
erned by the pertinent elastic moduli. So we would expect
a quasi-longitudinal mode, governed essentially by the bulk
modulus, and a quasi-transversal one, governed mostly by the
shear modulus. (In an isotropic continuum, we could leave
out the words “quasi”, “essential”, and “mostly” in the pre-
ceding sentence, because the sound velocities are given by
cL = √

K/ρ and cT = √
G/ρ there.)

This then takes us to the most interesting part of the com-
parison, the fact that there is a substantial difference in the
shear moduli for the two calculations (which persists if we
do the anisotropic calculation via fitting of moduli instead
of compliances): the shear modulus has a maximum near the
centre line of the pile in the bottom layers of the pile accord-
ing to the calculation assuming isotropic elasticity, but it has
a minimum, if cubic anisotropy is assumed. Note first that
if everything is done properly, it is logically impossible for
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Fig. 4 Effective material properties from simulations of sand piles
poured from a point source. Left moduli calculated assuming isotro-
pic elasticity, via minimization of the sum S′ (21), using a single point
(m = 1) at the centre of each RVE. Right moduli calculated assuming

linear elasticity with cubich anaisotropy, via minimization of S̃ (18),
using 5 points (m = 5) near the centre of each RVE. All moduli are
given in N/m. Layer heights are as in Fig. 2

results from the isotropic calculation to be right if those from
the anisotropic one are wrong, because the anisotropic case
contains the isotropic one as a limiting case. If an isotro-
pic model gives the true behaviour, the anisotropic one must
reproduce this. Hence, unless both results are wrong, the
anisotropic one must be correct and this proves that elastic
anisotropy does have some important consequences in our
sand piles. There are some directions in the material, along
which it shows very weak resistance to shear.

To explain this qualitatively, we combine a prior result
with observations of the dynamics during the pouring

process. As reported in [41], we found the mass density
ρ inside a sand pile accumulated via a wedge sequence to
be higher below its tip in the region of reduced pressure p
than in its surroundings, which is quite counterintuitive. One
would rather expect the density to decrease when the pres-
sure decreases, because dp/dρ < 0 should result in a neg-
ative compressibility, and a negative compressibility means
mechanical instability plus a negative bulk modulus, which
we do not measure. In fact, what we see here, is that the
“constitutive equation” or equation of state involves non-
uniqueness of the dependence p(ρ), as we can, by reducing
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the gravity level, diminish both the pressure and the density,
until we have the same density at the centre of the pile as we
had off-centre before gravity reduction, but we will have it
at a much lower pressure. This is akin to the example of the
ferromagnet invoked in the introduction, where we can have
different magnetizations at the same external field, depend-
ing on the history of magnetization. In the sandpile, we can
have different pressures at the same density, depending on
how this density was arrived at. On the other hand, in sand
piles grown layer by layer, the density is constant everywhere
except close to the surface. Moreover, the dynamics of for-
mation of a pile produced via the wedge sequence is rather
violent—almost all of the time, there are avalanches, leading
to a selection of the angle of repose, whereas for a pile gener-
ated via a layered sequence, growth is relatively smooth, and
by adapting the speed of length reduction of the line source,
any slope angle between zero and the maximum angle of
repose can be created. Besides selecting a definite angle of
repose, the avalanche dynamics of sand piles obtained from
a point source leads to the emergence of force chains. These
chains entail arching, which is, generally speaking, the expla-
nation for the pressure minimum.

But we can form a much more detailed physical picture of
how this minimum arises. We may visualize the continuing
sequence of particles falling from the point source as a tap-
ping experiment for the particles below the surface, because
there will be fluctuations and intermittency in the momen-
tum transfer to the particles that have already settled down.
In experiments, tapping is often done from below, but that is
more or less for practical reasons. If the flowing sand itself
is at the origin of fluctuating momentum transfer, there is no
reason why tapping could not happen from above. It is known
that tapping leads to compaction. So the material below the
emerging arch compactifies, which leads to an increased den-
sityandchainsof jammedparticlesbutalsoa loweredpressure
underneath, because these chains will carry a larger percent-
age of the forces. In additon, a layer of loosely packed material
should be produced just below the arch(es). The bulk modulus
will hardly be affected by this. However, the shear modulus
along this layer should be greatly reduced. This is a way to
rationalize the appearance of a minimum in the shear modu-
lus at the centre of the pile, but clearly the situation calls for
a more detailed investigation in terms of a model taking into
account the most general linearly elastic configuration, i.e.,
starting from the full expression (16) or its analog in terms
of compliances. Such an endeavor is beyond the scope of the
present paper.

6 Distribution of stress and strain invariants

We plot in Fig. 5 the trace of the (negative) incremental stress
tensor as a function of the trace of the (negative) strain tensor

Fig. 5 Correlation between trace of the incremental stress tensor
(in N/m) and trace of the strain tensor for wedge-sequence sand piles

for sand piles created from a point source. The graph shows
that the behaviour is nonlinear. The left part of the graph
(with strains below 2 × 10−4) corresponds to the points that
are close to the surface of the sand pile.

The slope of this graph is proportional to the differential
bulk modulus; we observe that it decreases smoothly near the
surface suggesting a smooth transition from elastic to plas-
tic behaviour rather than a discontinuous one. What is inter-
esting about this graph (though not difficult to understand) is
thatwehave(roughly) linearelasticbehaviour for largestrains
(between 3 × 10−4 and 4 × 10−4) and stresses and nonlin-
ear behaviour announcing the transition to plastic behaviour
for smaller strains, contrary to what one sees in solid state
mechanics, where plastic behaviour is a consequence of large
loads. Of course, this is due to the non-cohesive nature of the
granular medium. Under compressive external load the pile
behaves mostly elastic, but when this load becomes small or
negligible, the lack of attractive interaction between the parti-
clesmakes itself felt, theaggregate starts toact likean isostatic
network [45], which is almost flexible, and hence plastic.

Similar behaviour was observed in the analytical approach
[1] for sand piles obtained by Didwania, Cantelaube, and
Goddard as they assumed linear elastic behaviour near the
centre and plastic behaviour closer to the surface of the sand
pile. For simplicity, they considered constant (asymptotically
large) elastic coefficients in the whole elastic domain of the
pile. As we have discussed in another paper [41], the elas-
toplastic approach produces a decent approximation for the
pressure along the bottom layer of the pile. Our results in the
present paper demonstrate that the stress fields at the inte-
rior of the sand pile are not as well described by this simpli-
fied approach, due to an inhomogeneous distribution of elastic
properties.

7 Conclusions

We have performed simulations of two-dimensional granu-
lar aggregates consisting of convex polygons and measured
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microscopic force distributions of the resulting “sand piles”.
Via averaging over representative volume elements, for
which a sufficient size was determined to contain 100–200
particles, we have determined stress, strain and fabric dis-
tributions. To obtain a measure for strain, the sand pile was
allowed to relax under reduction of gravity. While it may
be difficult or impossible to determine the strain tensor in
an experimental sand pile, its estimation from simulations
is feasible. We define the strain with respect to a hypotheti-
cal reference state at zero gravity. This reference state may
be approximated from the static pile obtained in a simula-
tion by slowly changing gravity and following the particle
trajectories during the ensuing load change. Then it is easy
to compute the macroscopic strain tensor by averaging over
an RVE. It turns out that the size of the RVE we need for
converged strain tensors is the same as for stress tensors. For
total strains, the procedure gives no more than a rough esti-
mate, which is best for the uyy component. For incremental
strains, it allows their precise measurement and a zero-strain
reference state is not needed in that case.

We find that the vertical normal strain uyy is not only min-
imum at the bottom layer, but also in higher layers of the sand
piles constructed by a wedge sequence. However, it disap-
pears in layers near the tip of the pile. A similar vertical nor-
mal strain minimum was not obtained in piles poured from
a line source, which suggests that the construction history
affects the strain distribution under a sand pile in a similar
way as it does for the stress distribution.

In the next step, we determine elastic constants for sand
piles poured from a point source using incremental stresses
and strains and assuming Hooke’s law throughout the pile.
Comparing an isotropic model with a model invoking cubic
anisotropy we notice that elastic constants such as the bulk
modulus and Young’s modulus are hardly affected by the
model choice and can thus be measured with some reliabil-
ity. Consequences for sound propagation in granular materi-
als are briefly discussed and support earlier work [44]. On the
other hand, results for the shear modulus are strongly model
dependent, meaning that isotropic elasticity cannot work. We
offer a preliminary explanation for the minimum in the shear
modulus obtained from an anisotropic model. Whether this
explanation indeed contains the essential physics is a ques-
tion to be decided by more research in the future.

For the time being, we present the following physical pic-
ture explaining the appearance of a pressure minimum in sand
piles poured from a point source and its absence in sandpiles
constructed layerwise. In the latter case, the impact of new
particles is relatively smoothly distributed along the top layer
of the growing pile; each layer can relax mechanically before
the next one is built, avalanches are absent. On the other hand,
when particles arrive from a point source, the central part of
the pile is persistently bombarded with a fluctuating stream
of particles, which is akin to an aggregate being “tapped from

the top”. This leads to local compactification and arching fol-
lowing the emergence of bridges of jammed particles. These
support force chains leading to a reduction of pressure below
them. This way the appearance of a density maximum and a
pressure minimum at the same time, otherwise counterintu-
itive, becomes understandable.

Finally, we determine the correlation between invariants
of the stress and strain tensors for a change in gravity of
about 15%; the observed stress and strain relation is nonlin-
ear, due to the distribution of local properties varying from
the centre to the surface of the pile. While we have almost
linear elastic behaviour near the centre of the pile, there is
softening of the elastic constants announcing the transition to
plastic behaviour near the surface of the pile. This behaviour
is mimicked by the model given by Cantelaube et al. [1] (but
without a change in elastic constants). We observe that the
macroscopic tensors stress and fabric are not collinear in the
sand pile, which is in line with our observations about the
necessity of an elastically anisotropic description.
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Appendix: Calculation of contact forces

In principle, the contact force should be computed from
the deformation of two colliding particles and their elastic
properties. As discussed in the body of the paper, this is
not practical. Instead particles are allowed to overlap with-
out shape change, but a repulsive force is introduced that
increases strongly with increasing overlap of a pair of par-
ticles. Figure 6 visualizes the geometrical elements that are
relevant to the calculation. Due to the convexity of overlap-
ping particles, their boundaries will intersect in exactly two
points c1 and c2, as soon as there is a finite overlap area.
The straight line joining these points is the contact line, used
to define a normal direction n⊥ and a tangential direction
n‖ as well as the point where contact forces act—for this
the midpoint si j of the contact line is chosen. As we assume
equal density for all particles, their masses mi and m j are
directly proportional to their areas. The contact point si j is
also needed in the definition of the branch vectors ri and
r j which connect the centres of mass of the particles to it.
The overlap area A is calculated using the surveyor’s for-
mula for the inner polygon containing the corners c1 and c2.
Dynamical quantities needed in the force calculation are the
particle velocities vi and v j and the angular frequencies of
their rotation, ωi and ω j .

First we define a few quantities needed in the calcu-
lation. The characteristic or contact length is given by
l = ri r j

ri +r j
, where ri = |ri | , r j = ∣∣r j

∣∣ (so it is not the length of
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Fig. 6 Illustration of geometrical and dynamical quantities used in the
calculation of two colliding particles. The size of the overlap area is
strongly exaggerated

the contact line). This is half the harmonic mean of the branch
vector lengths corresponding to the common contact of the
two particles. If one of the particles is much smaller than
the other, l becomes equal to its branch vector length. This
choice of a characteristic length accounts for the fact that the
same elastic displacement is much more easily imposed on
a large body than on a small one, or to put it differently that
short springs are stiffer than long ones. Next, we introduce a
reduced mass via m⊥ = mi m j

mi +m j
, and a “tangential” mass

m|| = 1

1
mi

+ 1
m j

+ r2
i
Ii

+ r2
j

I j

,

where Ii and I j are the moments of inertia of the particles
with respect to their centres of mass [see also (1)], calcula-
ble from their polygonal shape assuming homogeneous mass
density. The tangential velocity of one particle referred to the
other is v|| = (v1−v2+r1×ω1−r2×ω2)n||. We define a pen-
etration depth using the overlap area A and the characteristic
length l: deff = A/ l. This depth is essentially proportional
to the overlap area, as the characteristic length changes very
little during a collision. With these definitions, the contact
force consists of three contributions.

(i) An elastic repulsive force normal to the contact length:

F⊥ = Y deff = Y
A

l
.

Here, the particle Young’s modulus Y is introduced.
(ii) A dissipative normal force to account for the fact that

collisions are almost always inelastic: This force is
constructed in two steps. First, we set

D∗⊥ = γ
√

Y m⊥ḋeff = γ
√

Y m⊥
�A

l�t
,

where the second formula follows from the assumption
that l is constant during the collision. γ is a damping

coefficient. Now it can happen that
∣∣D∗⊥

∣∣ becomes
larger than |F⊥|, which is not a problem when the two
particles approach each other. But if this occurs while
they move away from each other, then the resulting
force will be attractive which is unphysical. Hence the
dissipative part of the normal force is set according to
the following rule

D⊥ =
{

D∗⊥ on approach
max(D∗⊥,−F⊥) on separation

.

(iii) A tangential friction forceF||, following the work of
Cundall and Strack [32]: To be able to model Cou-
lomb friction, we use the following algorithmic pro-
cedure. Whenever two particles touch, an imaginary
spring is attached to the contact point. This spring is
elongated during the continuing sliding motion of the
particles alongside each other and a restoring force
starts to build up. Of course, this force cannot become
arbitrarily large, so the spring is not elongated any
further, when the maximum force allowed by the sta-
tic friction coefficient has been reached, instead the
spring is pulled along the contact line. Clearly, the
tangential force does not have to reach the maxi-
mum value μF⊥, because it acts to reduce v||, and
once the relative tangential motion of the two parti-
cles stops, the spring is also not elongated any fur-
ther. At initiation of a new contact, we set F||(0) = 0
and afterwards, the tangential force evolves accord-
ing to

F∗|| (t + �t) = min

(
F∗|| (t) + 2

7
Yv||�t, μF⊥(t)

)
,

where μ is the static friction coefficient, and the fac-
tor 2

7 is adapted to Hertzian stress for spherical par-
ticles. For a sliding contact, μ should be replaced by
the dynamic friction coefficient, which in our simula-
tions is taken equal to the static coefficient. This allows
us to get around the necessity of deciding whether a
contact is sliding or not (which is nontrivial, as the
exact value zero of the velocity is numerically infre-
quent). In order to avoid or reduce spurious oscillations
of the tangential velocity, a viscous damping term is
introduced for the tangential force similar to the pro-
cedure used in the calculation of the normal force.
Setting

D|| = v||
√

2

7
Y m||,

we compute the total tangential force as
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F∗|| (t + �t) = ±min

∣∣∣∣F
∗|| (t) + 2

7
Yv||�t + D||

∣∣∣∣ ,

|μF⊥(t)| ,

with the sign chosen appropriately, so the force will
always be opposite to the relative tangential motion of
the two particles.

In total, three parameters enter the force model; these are
the particle Young’s modulus Y , the phenomenological vis-
cosity γ , and the friction coefficient μ. The particle Young’s
modulus is a phenomenological coefficient, too, since it may
differ by a (small) factor from the true bulk Young’s mod-
ulus, given that the normal elastic displacement is assumed
proportional to, but not necessarily equal to, A/ l.

Advantages of the described modeling procedure are that
a particle sliding with a small velocity on a substrate (for
which another big particle may serve) will not commence
continuous oscillations (it would do so, if the friction force
were simply modeled as μF⊥) and that a particle is able to
come to rest on an inclined plane, both features that our force
model should have in the interest of realism.
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