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Abstract We investigate the effective material properties of sand piles of soft convex polygonal particles 
numerically using the discrete element method (DEM). We first construct two types of sand piles by two 
different procedures. We then measure averaged stress and strain, thelatter via imposing a 10% reduction of 
gravity, as well as the fabric tensor. Furthermore, we compare the vertical normal strain tensor between 
sand piles qualitatively and show how the construction history of the piles affects their strain distribution as 
well as the stress distribution. In the next step, we determine the elastic constants, assuming Hooke’s law 
throughout the sand piles, and the correlation between the elastic material conefficients and the fabric ten-
sor. We observe that the bulk modulus of the sand pile, i.e., the stiffness of the granulate is a linear function 
of the trace of the fabric tensor. We determine the relationship between invariants of the stress and strain 
tensor, observing that the behaviour is nonlinear which means that we have linear elastic behavior near the 
centre of the pile and nonlinear behavior announcing the transition to plastic behavior near the surface of 
the sand piles, the same behavior as was assumed by Cantelaube et al. [1]. We find that the macroscopic 
stress and fabric tensors are not collinear in the sand pile. 
 
1 Introduction 
 
In the last few years, extensive research has been devoted to the study of granular materials due to their 
importance for applications in various industries and because they pose fundamental analytical challenges 
[1],[2]. An important question is to understand the mechanical properties of non-cohesive granular matter, 
especially in the static limit. In this regard, the simplest example out of a collection of granular arrange-
ments is the static sand pile, and the practice of storing granular materials in the form of sand piles occurs 
in many industrial situations. In order to handle the processing of granular materials in a sand pile properly, 
it is important to understand its mechanical properties and effective material behavior.  
 
The stress distribution under a pile of sand displays some puzzling properties. Depending on characteristics 
such as the size and shape distribution of particles but also the construction history of the aggregate, two 
piles consisting of the same material may have different stress distributions [3]. If the material is dropped 
from a point source, there is a stress minimum, if it is dropped layer-wise, there is no minimum. However, 
in some cases, the stress distribution displays a pronounced minimum below the tip of the sand pile and in 
others it has a small minimum [4]. If the sand pile contains a mixture of ellipsoidal particles, there is a large 
stress dip below the tip of the pile for a certain construction history of the pile, whereas when it contains a 
mixture of roundish particles, there is a much smaller dip.  
 
To a certain extent, even more interesting than studying the stress tensor is to determine the strain distribu-
tion under a sand pile. One might regard it as one of the essential questions in the field of granular heaps, 
how deformation under stress can be defined, aiming at the identification of a strain tensor and establishing 
a correlation between the stress and strain tensors in order to determine effective material properties. Up to 
now, no strains have been measured in experiments on sand piles. Theoretical models and analysis assume 
that for sand piles displacement fields are not available. Therefore, constitutive relations proposed for sand 
piles [1],[2] have been obtained without introduction of a strain tensor.   
 
In this paper, we focus on the sensitivity of the strain distribution to the preparation of sand piles. The main 
aim of this study is to investigate numerically the effective material properties of sand piles. By performing 
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a discrete element method (DEM) simulation, we obtain a macroscopic strain tensor from microscopic 
quantities such as displacements of the individual grains in a two-dimensional sand pile. Then we can esti-
mate local elastic constants assuming Hooke’s law. Generally speaking, if we find almost constant values 
of elastic constants throughout the sand piles, linear elasticity may be considered a good approximation. If 
we get, on the other hand, strongly varying elastic constants, then we can say that linear elasticity is not 
going to work for the pile as a whole. Moreover, this computation serves as a consistency check for theoret-
ical assumptions such as the rigid-particle hypothesis. If our calculation produced elastic constants of the 
same order of magnitude as the Young’s modulus that we assign to the particles to allow an overlap for 
force calculation, then the idea that the sand pile has a macroscopic elastic behavior different from that of 
its microscopic constituents would not be valid because the elastic constants of the pile would go to infinity 
with those of the grains. This idea can work only, if the sand pile admits a finite elastic response in spite of 
the rigidity of the grains, which means that the elastic coefficients of the sand pile must be significantly 
smaller in the simulation than those of the particles. 
 
The paper is organized as follows. In Section 2, we first describe our discrete element method (DEM) simu-
lation of two dimensional sand piles consisting of soft convex polygonal particles. In Section 3, we deter-
mine the stress tensor as well as the strain tensor, adopting Cambou’s best fit strain approach for the latter. 
We discuss the averaging procedure used to extrapolate to macroscopic fields. Then we present simulation 
results for averaged vertical normal strains at different heights inside a sand pile poured from either a point 
source or a line source. We give a formula for the fabric tensor of polygonal particles and discuss its differ-
ent properties in Section 4. Once we have the stress and strain tensors, we determine the elastic constants 
assuming Hooke’s law. Then, we measure effective material properties of the sand piles that are poured 
from a point source and establish a correlation between elastic constants and fabric tensor, discussed in 
Section 5. We also determine the relation between the stress and strain tensors in Section 6. At last, we give 
some conclusions from our results in Section 7. 
 
 
 
2 Simulation method 
 
We perform numerical simulations, in which a sand pile is constructed from several thousand convex po-
lygonal particles with varying shapes, sizes and edge numbers. The particles are poured from either a point 
source, which regularly leads to a pressure minimum under the pile, or a line source. We use a discrete-
element method with soft but shape-invariant particles: two particles in contact with each other are allowed 
to interpenetrate partially. On the one hand, it would be inefficient to solve the elastic equations for each 
collision between pairs of nonrigid particles, on the other, to implement an event-driven code allowing the 
(desirable) solution of the equations of motion for rigid particles would be too cumbersome with polygonal 
particles. 
 
We solve the equations of motion following from the balances of momentum and angular momentum for 
each particle, using a fifth-order Gear predictor-corrector method [5]. Colliding particles overlap. Forces 
are then calculated from the geometric characteristics overlap area and contact length (defined as the dis-
tance between the two points of intersection of the overlapping polygons) using the relative velocities of 
the two particles.  The calculation involves phenomenological elastic constants as well as model parameters 
for friction and viscous damping. Details are given in [6]. 
 
In two dimensions, the momentum balance provides two equations per particle, the angular momentum 
balance one: 
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Here, the subscript i runs over all the particles, the subscript j over all the contacts of particle i with other 
particles. That is, forces and torques are exchanged between particles only if they touch. Hence we have 
short-range forces, viz. contact forces. Gi is the force acting on particle i due to external fields, in our case 
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just gravitation, Fij the force created by the particle touching particle i in contact j. There is at most one 
contact between two particles as our polygons are restricted to being convex. 
 
The force calculation is one of the most time-consuming parts of the algorithm. Of course, advantage is 
taken of the short-range nature of the forces by calculating only non-vanishing forces, i.e., forces between 
particles that are really in contact with each other. To achieve fast contact determination in a time that is 
proportional to the number of particles (not to its square), independent of the complexity, i.e., the number 
of edges of the particles, algorithms from virtual reality and computational geometry were adapted. These 
use bounding boxes and Voronoi regions to determine overlaps of particles [6]. 
 
We solve Newton’s and Euler’s equations of motion involving the forces and the torques acting on each 
particle, using a fifth-order Gear predictor-corrector method.  Magnitude, direction and point of application 
of the microscopic force between two colliding particles are calculated from the area and contact length of 
their overlap. 
 
3. Stress calculation 
 
Once we have the forces, we can compute stresses. It is easy to derive a formula for the average stress ob-
tained in a homogeneous polygonal particle [7], assuming that the forces given in the contact points act on 
the corresponding edge of the polygon: 
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where xi
c is i-th component of the branch vector pointing from the center of mass of the particle to the con-

tact point c, and fj
c is the j-th component of the total force in that contact point.  Vp is the volume of particle 

p (actually an area, since we are in 2D) .  
 
Expression (2) may be interpreted as the stress tensor associated with a single particle. This microscopic 
stress would not be a convenient means to describe the macroscopic sandpile, as it fluctuates wildly within 
a volume containing a few sand grains. Moreover, it is not defined in the voids between the grains. Hence, 
for a continuum description, we need to average microscopic stresses. 
 
A representative volume element (RVE) is introduced via the requirement that the average becomes size 
independent, if the volume is taken equal to this value or larger. Averaging over different volumes gives 
different results, as long as the volume element is too small. As we increase the size of the volume element 
in the computation of the average, the latter converges to a certain value as shown in Fig.1. We find that 
sizes of the volume element containing 100-200 particles are sufficient to serve as RVE. 
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Fig.1: (A) Representative volume element (RVE) for stress tensor, and (B) RVE for strain tensor.  
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While the calculation of stresses is rather straightforward, this is not true for strains. In fact, even the defini-
tion of strain is problematic after assuming particles to be essentially rigid. For this reason, most macro-
scopic descriptions proposed in the last few years try to get by without using strain at all. Whether this ap-
proach can be successful in the long run remains to be seen. In any case, even if it may be difficult or im-
possible to determine strains in experiments on sand piles, this is not quite so in a simulation. 
 
Our original idea was to define strains with respect to a hypothetical reference state of zero gravity of a 
sand pile essentially identical to the one at ambient gravity, except of course for slightly displaced particle 
centers. In this reference state, no particle rearrangements should be present in comparison with the actual 
state. The reference state would then be obtained from the ambient one by slowly reducing gravity. In prin-
ciple, it is not necessary to go down to zero gravity, as long as the strains increase linearly with the gravity 
level – one may then extrapolate to zero from the knowledge of the positions of the particle centers of mass 
at two arbitrary different gravity levels. But it is necessary to let the sand pile approach a state of rest after a 
reduction of gravity. Moreover, linearity has to be checked by looking at different gravity levels.  
 
This method does not work as expected, since a reduction of gravity leads to a proportional reduction only 
of normal stresses corresponding  to the direction of gravity, i.e. σyy , but not σxx. Stresses in the x direction 
are essentially due to static friction of the pile with its support. Since most contacts are not fully mobilized, 
contact forces at the bottom of the pile are not strictly proportional to the normal force (their weight); the 
effective friction coefficient can vary between 0 and µ during a change of the gravity level. Hence, the 
method does not yield absolute displacements, as we have no access to the hypothetical reference state. 
Nevertheless, it is of course still possible to determine incremental strains, which are defined as the strain 
changes between the actual state and a state at a different gravity level.  Using incremental stresses as well, 
we are then in a position to determine elastic coefficients. 
 
We are aware of two ways given in the literature for determining averaged strains in an assembly of grains. 
First the equivalent continua theories (Bagi [8]; Satake [9]) and second the least-square fit theories (Cam-
bou et al. [10] ). In our study, we used one of the simplest techniques, namely the best-fit strains of Cam-
bou et al. [10] who consider the relative translation instead of the contact deformations, which means to 
exclude particle rotations from the analysis. Displacements are characterized in terms of the translations of 
the particle centers.  
 
Let p

jdu  denote the translation of the centre of particle p.The relative translation of the pairs of grains p 
and q forming contact c is 
  

p
j

q
j

c
j duduud −=∆                                                                                                          (1) 

 
If every particle of assemblies of grain moved according to a uniform displacement gradient tensor jiε , 
then the relative translation at contact c would be 
 

c
jji

c
i lud ε=∆                                                                                                                     (2)                                                                    

where c
jl is the branch vector at the contact point. 

 
However, usually this is not the case, and for a general case, we would have 
 c

jji
c
i lud ε≠∆                                                                                                                    (3)         

 
Then, we determine the tensor jiε  for which the square sum of the deviations in (3) is the smallest i.e, we 
minimize the following quantity 
  
 Z= ∑ −∆

c

c
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c
j lud .)( 2ε                                                                                                   (4) 
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with respect to klε , i.e., we set 0=
∂
∂

kl

Z
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 for every k,l. 

Equation (6) gives four equations in 2D which can be written in matrix form as follows 
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(i is 1 or 2) 
 
The coefficient matrix on the left-hand side of (5) is positive definite if there exist at least two branch vec-
tors in the system that are not parallel to each other. This is the necessary and sufficient condition of the 
existence of the Cambou et al. best-fit strain in 2D.  
 
Let ijz denote the inverse of the coefficient matrix. In order to determine the 11ε  and 21ε  we substitute 

1=i , whereas 2=i is substituted for the calculation of 12ε  and 22ε . 
 
The solution of (5) can be written in the general form   
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c

c
k

c
jik ludz   2,1,, =kji      (summation over k implied)                                     (6) 

The tensor ijε  in equation (6) is the best-fit translation gradient of Cambou et al. The components of the 
strain tensor in two dimensions are as follows 
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The box size we use for the computation of the strain tensor is the same as for the stress tensor.  
 
Simulation results 
 
The vertical normal strain tensor component obtained from DEM simulations is displayed in Fig.2. for two 
types of sand piles that were constructed using the two different pouring protocols. The averaged strain  
tensor was evaluated throughout the sand pile; typically, we represent it via a plot of tensor components as 
a function of the lateral coordinate x of the pile for layers of given heights y1, y2, ... yn.  
 
We give this component of the strain tensor to obtain a qualitative picture, although the foregoing discus-
sion shows that it is not a rigorously determined quantity. While it has the correct scaling with gravity 
level, vertical and horizontal strains are of course coupled, so the errors produced by the method in the 
horizontal direction will also affect the vertical direction. The topmost curve in the graph shows the strain 
tensor result at the bottom layer of the corresponding sand pile, whereas the bottom curve corresponds to 
the top layer. An interesting feature of the vertical normal strain tensor for various heights is that the verti-
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cal normal strain changes with the layer position in the sand piles like the stress tensor. The vertical normal 
strain shows a dip (Fig.2.A) near the centre of the piles that are poured from a point source. It can be seen 
that the strain dip appears not only at the bottom layer but also exists up to the certain height of the sand 
pile (Fig.2.B). The vertical normal strain increases towards the centre and towards the bottom layer of sand 
piles poured from a line source. A strain dip does not occur in the profiles of sand piles constructed from a 
line source.  
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Fig.2: Vertical normal strain distribution at different heights of simulated sandpiles. Left: sand piles 
constructed from a point source (average over 9 piles), right: sand piles poured from a line source 
(average over 10 piles).  
 
 
4. Fabric tensor 
 
The density distribution is not homogeneous under a sand pile that is poured from a point source. There-
fore, it may be said that the internal texture of the pile is important. Furthermore, forces are propagated 
from one particle to the neighbour particles in an assembly of grains only via at the contacts point of the 
particle. Thus, for the quasi-static mechanics of granular aggregates, it is necessary to describe the associ-
ated contact network of the inter-particle contacts.  
 
A particular quantity that describes the internal texture of the granular assembly is the so-called fabric ten-
sor [11],[12]. Various definitions of the fabric tensor exist in the literature including definitions for ellipti-
cal, spherical or polygonal particles. In our study, we consider non-spherical particles so we employ here a 
mathematical formulation for the fabric tensor, in which the branch vector itself is used to define a unit 
vector in the direction towards the contact, because here the simplest way of characterizing the packing 
network is via the branch vectors connecting the particle centres of mass with their contacts.  
 
Once we have the contact points of the individual particles, we can calculate a fabric tensor for each parti-
cle, which yields an additive contribution to the overall fabric tensor. The latter then is a volume average 
over many particles. After defining the fabric tensor for one particle and for an aggregate of grains, we will 
demonstrate how it may be used to examine for isotropy of the granular structure of a material. The fabric 
tensor measures the contact number density in a given direction in the assembly. Therefore, it might be 
used to examine whether the grains of the material are placed in an isotropic way or whether there exists 
any directional ordering. 
           
           
The fabric tensor for one particle 
 
The general formula for the fabric tensor of single particle is given [11][12] by 
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Where c

i
n is the ith component of the unit normal vector at the contact point c of the considered particle p.    
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where ),( cc yx  and ),( pp yx  are the contact point and the center of mass, respectively, and the sum in 
(7) is over all the contacts of the particles. 
 
The trace of the fabric tensor determines the number of contacts of particle p: 
 
    ( )p c c p

ij i j
c

tr F n n C= =∑                                                                                      

 
We take an average over many particles in a representative volume element in order to determine the aver-
age fabric tensor that describes the contact network in a given volume V. 
 
 
Properties of the fabric tensor 
                  
The fabric tensor is symmetric by definition and therefore normally consists of three independent compo-
nents in two dimensions. These may be expressed in a largely coordinate independent way using tensor 
invariants and geometrical quantities. 
 
As the first of these quantities, we choose the trace of the fabric tensor, which is a scalar. It is also known 
as the volumetric part of the fabric and given by max min( )tr F F F= + , where maxF and  minF  are the 
major and minor eigenvalues of the fabric tensor, respectively. In Fig.3A, the trace of the averaged fabric 
tensor is plotted at different heights inside the sand pile. It can be seen from the figure that the mean num-
ber of contacts decreases near the surface of the sand pile and increases with increasing distance from the 
surface to the centre of the sand pile. Since we have measured the density to increase towards the centre of 
the pile in the case of a pile poured from a point source, this means that the number of contacts is higher 
where the density is maximum.  
 
As a second independent quantity determining the fabric tensor we may choose the fabric deviator. It is de-
fined as  max minDF F F= −  and is a measure of the degree of anisotropy in the contact network of the 

granular assembly. The deviatoric fraction of the fabric tensor / ( )DF tr F  is plotted in Fig 3.B for differ-
ent heights inside the sand pile. From the figure, it is observed that the deviatoric fraction decreases to-
wards the centre. This means that the fabric is more isotropic near the centre of the sand pile and more ani-
sotropic in the outer part. The fabric anisotropy is between 0.05 and 0.15.    
 
The angle of the orientation of the major eigenvector of fabric tensor may serve as the third independent 
quantity defining the fabric tensor. The orientatation of the major eigenvector with respect to the horizontal 
axis is given in Fig 3.C at different heights inside the sand pile. It changes from -40 degrees (left) to +40 
degrees (right). 
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Fig.3  A-D.  (A) trace of the fabric tensor, (B) deviatoric fraction, (C) orientation of fabric versus lat-
eral position in the sand pile, and (D) orientation of fabric, stress and strain plotted only for the first 
two bottom layers of the pile.     
 
 
The orientation of three macroscopic tensors stress, strain and fabric are plotted in Fig. 2.D  only for the 
first two bottom layers of the pile. No meaning should be attributed to the deviation of the strain tensor 
from the behavior of the stress tensor, since the xx and xy components of the former cannot be determined 
reliably. It can be seen, however, that the orientations are different also for the fabric and stress tensors, 
which means that these macroscopic tensors are not collinear. Most likely this limits the utility of a descrip-
tion of granular piles in terms of isotropic elasticity. Nevertheless, we shall consider such a description in 
the following to explore these limitations in some detail. 
 
 
5. Determination of elastic constants 
 
Once we have the stress tensor and strain tensor we can determine the effective material properties of sand 
piles assuming Hooke’s law. Under the assumption that the material is locally isotropic, we can character-
ize its elastic constants using only two coefficients, for example Young’s modulus and Poisson’s ratio. The 
relation between stress tensor and strain tensor reads  
 
 
 1 1 2

 = + + − 
ik ik ll ik

E u uνσ δ
ν ν
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Written out in components for the two dimensional case this becomes 

((1 ) )
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                                                                    (8)                                                                           
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ν
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In our case, the unknown quantities are E and ν. 
 
Equations (8) and (9) allow us to obtain simple expressions for the trace and the first normal stress differ-
ence 
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Next, we determine the best approximation for E and ν satisfying all three equations (10), (11), and (12) as 
closely as possible. This is a minimization problem for given fields σij and uij, which may be cast as fol-
lows. Set 
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and minimize this expression with respect to E and ν.  That is, we set 
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and these two equations should be solved for E and ν in principle. It is found that they constitute a nonlin-
ear system that cannot be solved analytically (though a numerical solution should not be too difficult). A 
simpler approach is to use two different elastic constants, also well-known, namely the bulk modulus K and 
the shear modulus G, which are are related to Young’s modulus and the Poisson number via the following 
equations: 

2(1 )(1 2 )
EK

ν ν
=

+ −
                                                                                                     (14) 
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                                                                                                                  (15) 

which allows us to rewrite the above equations in terms of G and K, to obtain 
 

)(2 yyxxyyxx uuK +=+ σσ  

)(2 yyxxyyxx uuG −=− σσ  
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Then we minimize the expression 
 

2 2 2( , ) [( ) 2 ( )] [( ) 2 ( )] 4[ 2 ]= + − + + − − − + −xx yy xx yy xx yy xx yy xy xyg G K K u u G u u Guσ σ σ σ σ           (16) 
 
with respect to G and K, i.e., we set 
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Solving the simplified equations for K and G we obtain 
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Note that this calculation works the same way with incremental stresses and strains, so we can determine 
elastic constants even though we cannot obtain the absolute strain tensor. Once K and G have been deter-
mined, we can calculate E and ν as follows, 

 0.5 1 G
K

ν  = − 
 

                                                                                                            (20) 
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Fig.4- Effective material properties from simulation of sand pile poured from a point source. 
 
The effective material properties as obtained in simulations of sand piles that were constructed from a point 
source are shown in Fig.4.A-D. We measured the elastic constants at different heights of the sand pile. The 
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topmost curve in panels A, C, and D corresponds to the results for the bottom layer, whereas the bottom 
curve was measured the top layer of the sand piles.  For Fig. 4B, the layer to which a curve corresponds 
may be gathered from the domain of definition of the curve: this is largest for the bottom layer and smallest 
for the top layer (so the curve with the smallest variation corresponds to the bottom layer). We find that the 
elastic constants vary with position inside the sand pile. It may also be noted that the density changes as a 
function of the layer position in the sand pile, moreover, we observe that the middle region of the sand piles 
displays higher density than the rest (not shown). In addition, we see that the elastic constants Young’s 
modulus of elasticity, shear modulus, and bulk modulus increase towards the centre and towards the bot-
tom, and decrease towards the surface with very little fluctuation, but the correlation with the density is not 
really clear.   
 
We use a Young’s modulus of 710 /=E N m  for each particle and the scale of the measured elastic 
modulus of the sand pile is approximately 610 /=E N m , i.e. one order of magnitude smaller for small load 
as we reduced gravitation by only 10% .That means, the simulated sand pile is softer around one order of 
magnitude than its individual particles indicating the decrease in the stiffness of the sandpiles.The bulk 
modulus is observed to increase towards the centre as expected, indicating the central core region of the 
heap is much harder than the region closer to the surface. It can be seen in Fig 3D that Poisson’s ratio be-
haves differently as it increases towards the surface of the sand pile and decreases towards centre and tip of 
the sand pile, especially, it fluctuates more near the tip of the sand pile.  
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C                                                            D 
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Fig.5- Correlation between elastic constants with the trace of the fabric tensor. (A) Bulk modulus of 
elasticity (B) Youngs’s modulus of elasticity, (C) Shear modulus, and(D) Poisson’s ratio,  plotted 
against  the trace of the fabric tensor throughout the sand pile.    
In Fig. 5, we establish a correlation between elastic constants and trace of the fabric tensor. In Fig. 5A, we 
plot the bulk modulus of the macroscopic sand piles against the trace of fabric tensor. Obviously, the be-
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haviour is linear to a decent approximation, i,e the stiffness of the particles is a linear function of the trace 
of the fabric tensor, i.e. the number of contacts of a particle. Furthermore, Young’s modulus and the shear 
modulus are plotted, respectively, as a function of this coordination number in the Fig 5 B and 5 C.The 
behaviour also is roughly linear for both cases.  A similar plot for Poisson’s ratio as a function of the fabric 
is plotted in Fig. 5D. In this case, the behaviour is nonlinear, but a simple linear relationship is not ex-
pected, obviously. 
 
 
6.  Dstribution of stress and strain invariants 
 
We plot in the Fig.6 the trace of the (negative) incremental stress tensor as a function of the trace of the 
(negative) strain tensor. The graph shows that the behaviour is nonlinear.  The flat part of the graph corre-
sponds to the points that are close to the surface of the sand pile. The slope of this graph is the differential 
bulk modulus; we observe that it decreases smoothly near the surface and there is a smooth transition from 
elastic to plastic behaviour rather than a discontinuous one. What is interesting about this graph is that we 
have (roughly) linear elastic behaviour for large strains and stresses and nonlinear behaviour announcing 
the transition to plastic behaviour for smaller strains, contrary to what one sees in solid state mechanics, 
where the plastic behaviour is a consequence of large loads. Of course, this is due to the noncohesive nature 
of the granular medium. Under compressive external load the pile behaves mostly elastic, but when this 
load becomes small or negligible, the lack of attractive interaction between the particles makes itself felt, 
the sand starts act like an isostatic network, which is almost flexible, and hence plastic. 
 
Similar behaviour was observed in the analytical approach [1] for sand piles obtained by Didwania, Cante-
laube, and Goddard as they assumed linear elastic behaviour near the centre and plastic behaviour closer to 
the surface of the sand pile. 
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Fig.6 Correlation between trace of the incremental stress tensor and trace of the strain tensor. 
  
 
7 Conclusions 
                        
To conclude, we have performed simulations of two-dimensional granular aggregates consisting of convex 
polygons and measured microscopic force distributions of the resulting “sand piles”. Via averaging over 
representative volume elements, for which a sufficient size was determined to contain 100-200 particles, 
we have determined stress, strain and fabric distributions. To obtain a measure for strain, the sand pile was 
allowed to relax under reduction of gravity. While it may be difficult or impossible to determine the strain 
tensor in an experimental sand pile, it is feasible to obtain an order-of-magnitude estimate for it from simu-
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lations. We define the strain with respect to a hypothetical reference state of zero gravity. This reference 
state may be approximated from the static pile obtained in a simulation by slowly changing gravity and 
following the particle trajectories during the ensuing load change. Then, it is easy to compute the macro-
scopic strain tensor by averaging over an RVE. It turns out that the size of the RVE we need for converged 
strain tensors is the same as for stress tensors. For total strains, the procedure gives an estimate, which is 
best for the uyy component, for incremental strains, it allows their precise measurement. 
 
We find that the vertical normal strain uyy is not only minimum at the bottom layer, but also in higher layers 
of the sand piles constructed from a point source. However, it disappears in layers near the tip of the pile. A 
similar vertical normal strain minimum was not obtained in piles poured from a line source, which demon-
strates that the construction history affects the strain distribution under a sand pile.   
 
In the next step, we determined the elastic constants assuming Hooke’s law throughout the sand piles that 
are poured from a point source and the correlation between the elastic material constants and the fabric ten-
sor. We observed that the bulk modulus of the sand pile, i.e. the stiffness of the granulate is a linear func-
tion of the trace of the fabric. Then we determine the correlation between invariants of the stress and strain 
tensor for a change in gravity of about 15%; the observed stress and strain relation is nonlinear. While we 
have linear elastic behavior near the centre of the pile, there is nonlinear behavior announcing the transition 
to plastic behavior near the surface of the sand piles as the same behavior was assumed by Cantelaube et al. 
[1]. We observe that the macroscopic tensors stress and fabric are not collinear in the sand pile. 
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