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The discrete element method allows the simulation of complex behavior of granu- 
lar materials without constitutive laws. While in two dimensions shape-effects are 
well established, in three dimensions there is no universally applicable simulation 
algorithm for non-spherical particles. We will first present a force model for convex 
polyhedral particles, using the “overlap” of non-deformed polyhedra as a “measure” 
of the elastic force and explain the overlap computation algorithm. With this elastic 
force model, we then show that the continuum-mechanical sound velocity can be 
recovered for a space-filling packing of cubic blocks. Further, we show simulation 
results for heaps for which we obtain realistic high angles of repose, which corrob- 
orates the reliability of our simulation method and which further more shows that 
with our method, a larger phenomenology is accessible than with round particles. 

1. INTRODUCTION 

Granular materials have attracted a great deal of attention of researchers in the last few decades! 2:3), however to date no satisfactory general constitutive relationships have been es- 
tablished. The discrete element method is a suitable tool to study complex behavior of granu- 
lar materials without constitutive laws’ 2). Previous studies showed that in two dimensions the 
effects of the particle shape on macroscopic properties, e.g. stress-strain relation’) and sound 
velocity®), are significant. Nevertheless, there are hardly any universally applicable simulations 
for non-spherical soft particles in three dimensions which would give a well-defined force point 
and force direction, together with the possibility to maintain particle outlines exactly. Radjai’s 
contact mechanics algorithm allows to simulate rigid polyhedral particles®, thereby reducing the 
computational complexity of the contact computations, but due to the “infinite” Young’s modulus 
is not able to investigate any phenomena which are related to finite deformations or propagation speeds. Other groups” ** 1°) use the penetration depth as a parameter, but we think that it is 
difficult to show that for such force laws, the force direction varies continuously when change the 
orientation of their contact: Each non-continuous direction change will lead to a “blow up” of the 
simulation, as integrators for the equations of motion need a continuous (or even differentiable) 
time evolution of the forces. As we have not seen simulations of heaps or free slopes built on 
smooth grounds with those simulations yet, we are not convinced that such “minimal” force laws 
can be used in simulations. The model by Smith et al.) for quasi-static simulations looks to 
‘us like a slight improvement, as it uses the overlap volume as force magnitude. Nevertheless, it 
uses for the force direction the gradient of the volume overlap, which is difficult to determine in 
a dynamic simulation, and there is no force point defined which would be necessary to maintain 
static packings or to introduce static friction. 
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Another approach is the combination of geometric elements which allow quasi-one-dimensional 
distance computations , spheres, cylinders and surfaces !* 15), so that quasi-one-dimensional dis- 
tance computations can be used, as for spheres. Such “smoothed polyhedra” to our understanding 
will also suffer from the problem of a not well defined force-points (which are necessary for reliable 
modeling of static friction) due to the superposition of elements. Moreover, while the surface of 
such particles may look smooth in the graphics, the superposition of shapes will lead to a rather 
peculiar variation of the normal force where the shapes overlap: This will lead to a variation of the 
normal force and the elasticity. When particles slide on top of each other, a particle which slides 
down a slope modeled in the same fashion may stick even for friction coefficient which should lead 
to sliding. 

A further kind of modelization 14 15 16 using three-dimensional Finite-Elements introduces of 
additional internal degrees of freedom which will make the computational effort more prohibitive 
than it is already, when one takes into account that a system with 100x100 particles in two 
dimensions would need 100x100x100 particles in three dimensions. It is also not uncommon that 
complicated modelization possibilities are described, while the particle geometry in the actual 
simulations is quite restricted (Latham et al.) introduce arbitrary shapes and then simulate 
cubes). 

In this paper, we present a force model for convex polyhedral particles in three dimensions, 
as well as the algorithm necessary for the computational treatment, and we will show how such 
a simulation yields the correct sound velocity for space-filling packings. The simulation of heaps 
constructed by polyhedral particles on a smooth surface shows a well-defined angle of repose as a 
proof the stability of the simulation method. 

2. NUMERICAL SCHEMES 

2.1. DISCRETE ELEMENT METHOD 

The discrete element method (DEM, see Fig. 1, 
right) is a method which models interparticle forces 
based on elasticity parameters and on the overlap of 
undeformed particle shapes! ?), The penalty-method 
for the finite element method (FEM) in structural me- 
chanics in contact dynamics simulations uses the over- 
lap of elements in a similar way!”). Compared to a 
non-penalty FEM treatment of deformable particles!®), 
which needs a discretization of the elastic particles, the 
DEM uses only the degrees of freedom which are necessary for rigid bodies: Three in two dimen- 
sions and six in three dimensions. For the accuracy, there are hardly any drawbacks, as the only 
additional information one could gain from the FEM, internal stresses and strains, are either not 
of interest, or unreliable due to the fact that the microscopic surface asperities or material inho- 
mogeneities in realistic granular materials like amorphous solids will lead to arbitrary alterations 
of the FEM-results anyway. 

  

Fig. 1 Physical situation, a soft sphere is 

deformed while contacting a plane (left) 
and the simulation with FEM, many de- 
grees of freedom necessary (middle) and 
the overlapping shapes in DEM, only de- 
grees of freedom of the corresponding rigid 

body problem necessary (right). 

2.2. POLYHEDRAL PARTICLES 

Many DEM simulations of granular particles model particles as two dimensional discs. This al- 
lows to reduce the problem of identifying a two-dimensional contact situation to a one-dimensional 
distance calculation. The drawback of this approach is that this simulations are unreliable for 
dense configurations where the competition between rolling and sliding determines the dynamics 
of the system. Irregular polyhedral particles can be generated relatively easily by convex-hull-
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algorithms’) of random initial points while more regular shapes can be obtained by choosing the 
corners on the hull of an ellipsoid with given half radii?°). The faces of a polyhedral particle are 
triangles or divided into triangles for computational simplicity. 

2.3., EQUATION OF MOTION 

The movements of the particles are decomposed according to Kénig’s theorem as translational 
movements of the centers of masses and rotational movements around the centers of masses. For 
translational movement, Newton’s equation of motion 

Mi=F, (1) 
is applied, where M is the mass matrix, z the position vector and F the force vector. A crucial 
difference between the linear degrees of freedom and the rotational degrees of freedom is that while 
translations commute like vector additions, rotations don’t commute, like matrix multiplications. 
For rotational degrees of freedom, we have to use Euler’s equation of motion which relates the 
eigenvalues of the tensor of the moment of inertia J;, the torques 7; and the time derivative of the 
angular velocity vector w; as 

Iyw, — (Lg — Iz) wows T1 (2) 

T2 (3) 

735 (4) 

for the principle axes 7 = 1,2,3. While Newton’s equation of motion is Galilei-invariant, i.e. it 
can be solved in any coordinate system, Euler equation of motion must be solved in the center of 
mass system. In addition, for numerical stability, we use quaternions rather than Euler angles and 
angular velocities directly to represent orientations and rotational degrees of freedom. 

Totig — (3 — Ly) 
I3w3 os (ly = Ig)wyw 

2.4. INTEGRATION: GEAR-PREDICTOR-CORRECTOR 

As numerical approximation for the equations of SS 4 
motion, the backward difference formula of fifth or- _ 14 
der (also called “Gear Predictor Corrector”? ??)) is 
used. The advantage of this method is that it is 04-5 
“stiffly stable”, ie. able to neglect small oscillations oO = 
in the solution, and “A-stable”?%), i.e. able to ap- RB IO as SE AR FO 
proximate the solution of some equations with ar- Fig. 2 Simulations of a bouncing ball with 
bitrary large timestep. Moreover, it is an implicit gravitation constant g = 9.8, mass m = 
method which does not need a matrix inversion or a 1, damping constant 0.3 and spring con- 
solution of a non-linear system of equations for in- gtant k = 103 dropping from height h = 2 
tegrating first or second order differential equations on a oor: the Gear-Predictor:Corrector 
if the predictor-corrector formulation is used. For a method allows much larger timesteps than 

comparison, as shown in Fig. 2, the Gear-Predictor- the Runge-Kutta method. 
Corrector took much less computational effort than 
the Runge-Kutta 4/5-th method(“Prince-Dormand method”, DIFSUB by Gear”) to resolve the 
equilibrium position for the time-adaptive implementation. 
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2.5. GENERAL PROGRAM FLOW 

The flow diagram for the simulation of polyhedral granular particles using the predictor- 
corrector integration algorithm is given in Fig.3. The simulation starts from an initial state of 
the system, the position-vector x, the velocity-vector v, the orientations represented by a quater- 
nion array g and the angular-velocity-vector w. The new positions and orientations are computed
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from the Gear predictor formula. These new positions and orientations of the particles are used 

to update the vertices, edges and faces. From these actual geometric dimensions, the possible 

contact-particle-pairs are determined. For the interacting pairs, the forces and toques caused by 

the interaction are computed and inputed into the corrector. This process is iterated until the end 

of the desired simulation time. 

3. CONTACT DETECTION 

In principle, for a simulation with n particles, the in- Tnitial states: X 4 V; » 4p Wj 

teractions between one particle with all other n — 1 parti- 

cles must be checked. This gives a computational effort of [ Predictor: x, Vp > 4p» Wp 

all the particle interactions of the order n(n — 1)/2. The aeogsl - 

pre-factor 1/2 stems from the fact that for a force Fj; of |_Deteet likely: =— pairs | 

particle i on particle 7, we have Fj; = —Fji;, thanks to [Compute force & torque: F,t | no 

Newton “action-reaction” principle. If the interactions are I 

“long-range”, it is necessary to evaluate all these interac- Corrector: X , Ve» Jer We 

tion forces directly. Since the interaction in granular ma- 

terial systems are short-ranged, i.e. only contacting parti- 

cles experience interaction. Instead of checking all possible 

n(n —1)/2 interactions, we need a more efficient algorithm 

to find the likely contact particle pairs. The overall strat- 

egy for contact detection is to start with operations which 

are “computationally cheap”, but inaccurate, and continue 

with more “computational expensive” operations to reduce the number of contact pairs. To be 

specific, the “bounding box” method, the “bounding circle/sphere” method and the “projection” 

method are applied sequentially to first obtain and then refine a contact-particle-pair list for later 

force and torque computation. 

  

  

       

  

  

  

  

       
End of simulation 

Fig. 3 Flow diagram for the simula- 

tion of polyhedral granular particles. 

  

  

  

  

      
          

        

        

Fig. 4 Left: Intersection of the bounding boxes and the bounding circles, two particles intersect; 

Middle: Intersection of the bounding boxes while no overlap of the bounding circles, no intersection 

between the two particles; Right: Intersection of the bounding boxes and circles, no intersection 

between the two particles. 

We first check the extremal coordinates of the particles to find out whether there is an over- 

lap. The extremal coordinates form the “bounding boxes” of the particles (see the rectangles 

in Fig. 4). If there is an overlap between the bounding boxes of the two particles, we put them 

in the contact-pair-list. However, the overlap between bounding boxes does not guarantee the 

overlap between particles, as can be seen in Fig.4, middle and right. Then we need to check 

whether there is an overlap between the “bounding circles” of the particles. Bounding circles 

share the centroids of the particles and have as radii the distances from the centroids to the 
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furthest vertices (see the circles in Fig.4). By checking the overlap between the bounding cir- 

cles, cases like Fig.4, middle, could be eliminated from the list. For elongated particles like in 

Fig. 4, right, the overlap test of the bounding boxes and circles 

could not effectively determine whether two particles would 

intersect. Therefore we apply a projection method for refin- 

ing the list. While the overlap of bounding boxes depends on 

the relative orientation of the particle pair and the coordinate 

axes, the projection method includes the relative position of 

the particles directly independent of the axes’ orientation. For 

a pair of particles whose bounding boxes and circles overlap, 

see Fig.5, we first connect the centroids of the two particles, 

CC, as a baseline. Then we project the vertices of the two 

particles with respect to their centroids along CiC2. This 

yields the maximal protrusion of Pr; from centroid C, and 

Prz from centroid C2. If CyPr; and C2Prz2 have no overlap, 4 

we remove this pair from the contact-particle-pair list. After __ , 

the refinement by the projection method, for simulating n par- Fig. 5 Projection method: The 
ticles, we obtain a contact-particle-pair list whose number of projected vertices along the con- 
entry is far less than n(n — 1)/2: nection of the centroids of the two 

For simplicity, we have explained the algorithms for contact particles do not overlap, the two 
particles have no intersection. 

detection in two dimensions, but the implementation to three 

dimensions is straightforward. Rectangular bounding boxes become cuboids and bounding circles 

become bounding spheres. The projection method remains unchanged since it is independent of the 

choice of axes. If we check the bounding box of each particle with all other particles, the checking 

itself is still an O(n?) algorithm. Thus, the incremental sort-and-update algorithm applied by 

Schinner*) for polygonal particles was generalized to three dimensions and capable of providing 

a primitive contact-particle-pair list at low cost for further refinement by checking the bounding 

spheres and the projections of the vertex-vectors of particle pairs in the list.     
te se ay 

4. ELASTIC FORCE MODEL 

While the degrees of freedom are integrated 

out according to the equations of classical me- 

chanics, the physical content of the interac- 

tion between particles, see Fig.6, is a mat- 

ter of foresightful modeling. When we want 

to model the interaction between two inter- 

secting particles, we have to define three basic 

properties: The magnitude of the force, the 

direction of the force (for forces which are not 

central forces) and the force point (to define 
torques). For the simulation of two dimen- 

sional polygonal particles, we have a stable 

elastic force model*) whose generalization to 

polyhedral particles in three dimensions is the 

subject of the following sections. 

  

Fig.6 Two interacting polyhedra (left) and their 

overlap polyhedron (right): the thick line is the 

contact line and the vector starting at the cen- 

ter of mass c indicates the direction of the normal 

force; the vertices with star-maker are generated 

and with circles are inherited.
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Fig.7 Definition of the normal direction @ and tangential direction # for two-dimensional particles, circle-particles (left), for polygons via the contact line (middle) and for via the center of mass of the overlap polygon and its connection to the intersection points (right). 
4.1. NORMAL- AND TANGENTIAL DIRECTION 

For normal collisions of Particles, we take into account the deformation and the collision velocity. Tangential sliding leads to Coulomb friction so that we need unique mathematical definitions of the normal- and the tangential force. For round particles, it is common to define the vector connecting the two centers of mass as the normal direction. For polygonal particles, we can use the “contact line”, which goes through the two intersection points of the contacting particles, as the tangential direction and its normal as normal direction. Alternatively, one could connect the center of mass of the overlap polygon and the two intersections points to obtain the “contact line”, which is 

the direction perpendicular to the normal direction is the tangential direction. For polyhedral particles, the length-weighted normal direction definition becomes area-weighted (Fig. 6, right): First, the contact line is obtained which is a sequential connection of the line segments go through the intersection points; Second, the contact triangles are obtained by connecting the center of mass of the overlap polyhedron and the line segments; Finally, summing up the area-weighted normals of the contact triangles gives the normal direction. The plane orthogonal to the normal direction is the tangential plane in which the friction can be defined. 

4.2. ELASTIC FORCE MAGNITUDE AND FORCE POINT The modeling of forces in normal direction for the DEM borrows from the basic models of elasticity, namely [] Hook’s and Hertz’s law (for the elastic force, see Fig. 8). When we model an overlap with the DEM for a bar, the elastic force F.. will be Proportional to the penetration depth dz. On the other hand, if we want to model the RQ MA . contact of a spherical particle”), the elastic force Fu will Fig. g Deformations and overlap in be proportional to dx3/2, Many simulation codes for round elastic models: linear contact model particles exist which make use either of linear or Hertzian (for rectangles, left), and Hertzian con- potentials. For arbitrary shaped particles, the use of the tact model (for spheres, right) with penetration depth as parameter of the force is not practi- penetration depth dz. cable, because taking into account contact shapes (corner- on-corner, corner-on-edge, corner-on-face, edge-on-face, face-on-face) is tedious. For our polyhedral simulation (see Fig. 6) it is more convenient to use as parameter the volume of the overlap region, which can be shown to reproduce the linear regime and the Hertz-regime for the corresponding contact geometries. As force point, the center of mass of the overlap polyhedron can then be used (see Fig. 6). As far as the accuracy of the computation of overlap region is concerned, if we want to calculate the overlap of two cubes along their faces of e.g. 0.01m x 0.01m x 0.01m size, with 
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realistic Young’s modulus of about 100 GPa=10!! N/m”, we get the following estimate: Assuming 

a weight of 1 g for the particle, the relative penetration depth will be 

Al F 0.001kg - 9.81m/s? 

1 A-Y  0.01m-0.01m- 100- 109 N/m? 

With double precision (16 digits accuracy), we would have enough digits left so that rounding error 

will not affect our simulation. For sharper contacts, or softer material, which both result in larger 

penetration depth, the accuracy problem will become less severe. 

The elastic force law (without viscous damping and tangential friction) is a purely position- 

dependent law, so the energy is always conserved. By orientational changes without volume 

changes no additional energy can be “created” or “destroyed” in the system. We used the energy- 

conservation as one of the first confirmations for the correctness of our simulation when we de- 

bugged the code: Particles which dropped on a surface seemed to rotate rather fast after the 

collision with the ground or other particles, but by monitoring the (conserved) energy, we saw that 

the rotation was actually physical. The impression that the rotation is unphysical came from a 

lack of actual “experience”: Real particles which start rotating after a collision move too fast for 

the free eye. The seeming “singular” shapes (corners, edges) behave “singular” during interaction 

only inasmuch contacting particles at sharp contacts prefer to twist towards either one side or the 

other: The time evolution of the force (magnitude and direction) is nevertheless smooth. 

~ 107°.   
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Fig. 9 Sound wave in the continuum (wavy line, Fig. 10 Vectors from the center of mass c, c; 

left), in a packing of cubes (shaded overlap region to the contact point for arbitrarily shaped (left) 

of particles, middle) and of parallelepipeds (right). and regular (right) particles. 

4.3. CHARACTERISTIC LENGTH 

While our interaction should locally reproduce the contact laws depending on the shape of 

the contacting particles, we should take into account the units. If we use Young’s modulus (unit: 

N/m?) multiplied with the volume of the overlap polyhedron (unit: m?), there is still a factor L with 

a unit of length missing. The sound velocity in bulk solids is a physical property can be used to fix 

this length factor analogously to the two dimensional polygonal model®). Sound waves (microscopic 

deformations of the continuum traveling at sound speed c which is only material-dependent, not 

e.g. amplitude-dependent) are mimicked in DEM-simulations by microscopic displacements of the 

center of mass of the particles which should propagate with c for space-filling packings. Space-filling 

packings of cubes or parallelepipeds should have the same sound velocity as the bulk continuum, 

Coulk = 1/Y/p, which should depend only on the material parameters, namely the density p and 

Young’s modulus Y. Obviously, if we would choose the factor L constant, we see in Fig.9 that a 

sound wave/overlap amplitude in a packing of “short” particles would lead to smaller accelerations 

than a larger amplitude for “longer” particles. Thus instead of using a constant length factor, which 

makes the sound velocity dependent on the particle size, we define the “characteristic length” L, 

for two intersecting particles i and j with arbitrary shapes of different “radii”, |r;| and |r;| (distance 

between center of mass and contact point Fig. 10, left): 

lrallrsl L.=4 ; 
“ral + [rl
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This definition, for two rectangular particles of the same shape contacting with parallel sides, gives 
exactly the length of the particle (Fig. 10, right). With the definition of the ” characteristic length”, 
we finally have the complete form of elastic force magnitude: Fe = Y Vovertap/Le- 

The characteristic length is therefore a quantity which has to be introduced to make the sound 
velocity in granular materials independent of the particle size. It serves to compensate the ” time 
of flight” which the sound wave would spend while it passes through the particle, distant from 
the inter-particle contacts. This is not an effect of our choice of force law: Also for packings of 
spheres, one has to assume that the sound velocity should not change with the particle size, but 
with the packing density. The characteristic length is therefore complementary to the force-law 
(linear, Hertz or whatever): While the force-law takes care of the microscopic interaction at the 
contact point, the characteristic length takes care of the macroscopic propagation speed of this 
interaction through the bulk. 

4.4, OVERLAP COMPUTATION 

To compute the elastic force between two contacting polyhedra, we need to obtain the geometry 
of the overlap region, including its vertices, edges and faces. There are two types of vertices, 
inherited and generated. Inherited vertices are vertices of one polyhedron which penetrate into 
the other polyhedron, while the generated vertices are the intersection points of the triangulated 
faces of the two polyhedra, see Fig. 6, right. Here we will shortly outline the way to determine the 
inherited vertices. A plane with unit normal n(Nz, Ny, Nz) is represented in point normal form as 

n-r—d=0, (5) 

where r(rz,Ty,7z) is an arbitrary point on the plane and d the distance from the origin to the 
plane. If the normals of the all the faces of a polyhedron point outside, any points r'(r/,, Ths) 
located inside the polyhedron should satisfy the inequality 

nr’ — dy, <0, (6) 

where the subscript k indicates the k-th face of the polyhedron. The vertices of the original 
polyhedra which satisfy Eq.6 are inherited vertices. 

For the generated vertices, as indicated by the star markers in Fig.6, we have to compute 
the intersection of the triangular faces of the two polyhedra. If the two triangles intersect, the 
intersection will be a line segment whose endpoints we will call “intersection points”. For the 
degenerate cases, where i) there is only one intersection point or ii) the two triangles are on the 
same plane or iii) one edge of one triangle is on the plane of the other triangle, in the context of 
intersection of granular particles, the two particles are either about to start intersecting or separate 
after they have intersected, so the volume of the overlap region is zero. From here on, we discuss 
the non-degenerate case. The equation of a line which passes through point A(A,, A,, A,) and 
B(B,, By, B,) (equivalent. to a vector AB = B — A) can be written as r = A+ A(AB), where 
r(rz, Ty, Tz) is an arbitrary point on the line. Substituting this equation into Eq. 5, gives the solution 
for the parameter ; A 

os n . 

for n- AB # 0. In case that n- AB = 0, AB is on the plane. For 0 < \ < 1, r =A+)(AB) 
denotes the intersection between the segment AB and the plane. 

For two triangles T, and Tp lying on the planes P, and P; (Fig.11), we compute the intersection 
as follows: 

Step 1: Compute the three A (according to Eq.7) for T; and Py, if less than two satisfy 
0 << 1, exit with no intersection; else two intersection points V,, and Vie are obtained;
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Fig. 13 Propagation of the maximum velocities Fig. 14 Sound velocities of the small-particle 

of the Ist 6 particles in the chain and the large-particle chain 
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Fig. 15 A heap of polyhedral particles: New Fig. 16 Angle of repose of one heap views from 

batch added (above) and the final stage (below) the y=0, y=x and x=0 plane 

the energy of the impacting particles before reaching the equilibrium). A screenshot of the end 

of one simulation can be seen in Fig. 15 with scale in centimeter. The positions of the centroids 

of the particles projected into the y=0, y=x and x=0 plane are drawn in Fig.16. The averaged 

angle of repose from the simulations is about 30° for five runs of particle geometries generated with 

different random seeds. Because the number of corners/faces is relatively large, and the particles 

are inscribed in “nearly” rotational ellipsoids, the angle of repose is smaller than for many technical 

materials, Nevertheless, it is larger than the angle of repose for round particles (about 22°). 

6. SUMMARY AND CONCLUSION 

In this paper, we have outlined a implementation of a novel simulation method for polyhedral 

particles. For the contact detection, we have combined the usage of bounding boxes and bounding 

circles (spheres) and the projection of vertices along the connection of centroids of particles to 

provide a small number of contact pair candidates; For the computation of force and torque, 

we have implemented an elastic force model of polyhedral contacts in three dimensions with an 

algorithm for the overlap computation. We also performed simulation runs and computed physical
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observables. The simulations of granular chains reproduced the sound velocity of the continuum 

with the same density and Young’s modulus, which validates the model from the point of view 

of continuum mechanics. The simulations of heaps gave realistic high angles of repose which are 

not usually seen in simulations of spherical particles. This algorithm will be used to investigate 

practical problems like the dynamics of railway ballast where the influence of the particle geometry 

cannot be ignored. 
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